【題目】某購物商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元;為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施.經調查發(fā)現,每件襯衫每降價1元,商場平均每天可多售出2件.
(1)每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?
(2)每件襯衫降價多少元時,商場每天盈利最多?利潤是多少?
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,已知點F(2,0),直線GF交y軸正半軸于點G,且∠GFO=30°.
(1)直接寫出點G的坐標;
(2)若⊙O的半徑為1,點P是直線GF上的動點,直線PA、PB分別約⊙O相切于點A、B.
①求切線長PB的最小值;
②問:在直線GF上是夠存在點P,使得∠APB=60°,若存在,請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B(4,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E.現有下列結論:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正確結論的序號是 _____________________ 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,AM是△ACD的外角∠DAF的平分線.
(1)求證:AM是⊙O的切線;
(2)若∠D = 60°,AD = 2,射線CO與AM交于N點,請寫出求ON長的思路.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2的圖象如圖所示.已知A點坐標為(1,1),過點A作AA1∥x軸交拋物線于點A1,過點A1作A1A2∥OA交拋物線于點A2,過點A2作A2A3∥x軸交拋物線于點A3,過點A3作A3A4∥OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(換元思想)閱讀材料:
材料1 若一元二次方程的兩根為、,則,.
材料2 已知實數、滿足,,且,求的值.
解:由題知、是方程的兩個不相等的實數根,根據材料1,得,.
∴.
根據上述材料解決下面的問題:
(1)一元二次方程的兩根為,,則,___________;
(2)已知實數,滿足,,且,求的值;
(3)已知實數,滿足,,且,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】5G時代即將來臨,湖北省提出“建成全國領先、中部一流5G網絡”的戰(zhàn)略目標.據統計,目前湖北5G基站的數量有1.5萬座,計劃到2020年底,全省5G基站數是目前的4倍,到2022年底,全省5G基站數量將達到17.34萬座.
(1)按照計劃,求2020年底到2022年底,全省5G基站數量的年平均增長率;
(2)若2023年保持前兩年5G基站數量的年平均增長率不變,到2023年底,全省5G基站數量能否超過29萬座?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com