如圖,在△ABC中,∠C= 90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
1.若AC=6,AB=10,求⊙O的半徑;
2.連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,
試判斷四邊形OFDE的形狀,并說明理由.
1.連接OD. 設(shè)⊙O的半徑為r.
∵BC切⊙O于點(diǎn)D,∴OD⊥BC.
∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.
∴ = ,即 = . 解得r = , ∴⊙O的半徑為.
2.四邊形OFDE是菱形.
∵四邊形BDEF是平行四邊形,∴∠DEF=∠B.
∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等邊三角形.
∴OD=DE.∵OD=OF,∴DE=OF.
∴四邊形OFDE是平行四邊形.
∵OE=OF,∴平行四邊形OFDE是菱形.
【解析】
1.連接OD,設(shè)⊙O的半徑為r,可證出△BOD∽△BAC,則,從而求得r;
2.由四邊形BDEF是平行四邊形,得∠DEF=∠B,再由圓周角定理可得,∠B=∠DOB,則△ODE是等邊三角形,先得出四邊形OFDE是平行四邊形.再根據(jù)OE=OF,則平行四邊形OFDE是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com