【題目】如圖,A,F(xiàn),E,B四點共線,AC⊥CE,BD⊥DF,AE=EF,AC=BD.求證:△ACF≌△BDE.

【答案】見解析

【解析】試題分析先用HL證明Rt△ACE≌Rt△BDF,利用公共邊求出AF=BE,最后用SAS證明ACF≌△BDE.

試題解析:

證明:ACCE,BDDF(已知),

∴∠ACE=∠BDF=90°(垂直的定義),

Rt△ACERt△BDF中,

AE=BF,AC=BD,

∴Rt△ACE≌Rt△BDFHL),

∴∠A=∠B(全等三角形的對應角相等),

AE=BF(已知),

AE﹣EF=BF﹣EF(等式性質),

AF=BE,

ACFBDE中,

AF=BEA=∠B,AC=BD,

∴△ACF≌△BDESAS).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交與點P,若∠CAP=50°,則∠BPC的度是( )

A. 80° B. 60° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國南海海域面積約為3500000 km2 , 用科學記數(shù)法表示正確的是( )
A.3.5×105 km2
B.3.5×106 km2
C.3.5×107 km2
D.3.5×108 km2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化.開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指數(shù)y隨時間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

1)求出線段AB,曲線CD的解析式,并寫出自變量的取值范圍;

2)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?

3)一道數(shù)學競賽題,需要講19分鐘,為了效果較好,要求學生的注意力指數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.x2+x3=x5
B.2x2﹣x2=1
C.x2x3=x6
D.x6÷x3=x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:點E∠AOB的平分線上一點,ED⊥OA,EC⊥OB,垂足分別為C、D.

求證:(1)OC=OD;

(2)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a+b=5,ab=6,則(ab2的值是

A. 25B. 13C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長,墻DE長為12米,現(xiàn)用20米長的籬笆圍成一個矩形花園ABCD,點C在墻DF上,點A在墻DE上,(籬笆只圍AB,BC兩邊).

(1)如何才能圍成矩形花園的面積為75m2?

(2)能夠圍成面積為101m2的矩形花園嗎?如能說明圍法,如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)L1y=ax2﹣2ax+a+3a0)和二次函數(shù)L2y=﹣ax+12+1

a0)圖象的頂點分別為M,N,與y軸分別交于點E,F

1)函數(shù)y=ax2﹣2ax+a+3a0)的最小值為______,當二次函數(shù)L1L2y值同時隨著x的增大而減小時,x的取值范圍是______

2)當EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).

3)若二次函數(shù)L2的圖象與x軸的右交點為Am,0),當△AMN為等腰三角形時,求方程﹣ax+12+1=0的解.

查看答案和解析>>

同步練習冊答案