如圖,點(diǎn)是線段的黃金分割點(diǎn),請寫出一個正確的結(jié)論     。

 

【答案】

 

【解析】解:把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項(xiàng),這樣的線段分割叫做黃金分割。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
s1
s
=
s2
s1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖2所示,則精英家教網(wǎng)直線CD是△ABC的黃金分割線,你認(rèn)為對嗎?說說你的理由;
(2)請你說明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C把線段AB分成兩條線段AC和BC,如果
AC
AB
=
BC
AC
,那么稱線段AB被點(diǎn)C黃金分割,AC與AB的比叫做黃金比,通過計算可知黃金比值是
-1+
5
2
≈0.618,請你解釋黃金分割中的黃金比是怎樣求出來的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點(diǎn)D,請問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點(diǎn)F,延長AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市濱湖區(qū)九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊長為AO=6,AC=8,

(1)如圖①,E是OB的中點(diǎn),將△AOE沿AE折疊后得到△AFE,點(diǎn)F在矩形AOBC內(nèi)部,延長AF交BC于點(diǎn)G.求點(diǎn)G的坐標(biāo);

(2)定義:若以不在同一直線上的三點(diǎn)中的一點(diǎn)為圓心的圓恰好過另外兩個點(diǎn),這樣的圓叫做黃金圓.如圖②,動點(diǎn)P以每秒2個單位的速度由點(diǎn)C向點(diǎn)A沿線段CA運(yùn)動,同時點(diǎn)Q以每秒4個單位的速度由點(diǎn)O向點(diǎn)C沿線段OC運(yùn)動;求:當(dāng) PQC三點(diǎn)恰好構(gòu)成黃金圓時點(diǎn)P的坐標(biāo).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)把線段分成兩條線段,如果,那么稱線段被點(diǎn)黃金分割,的比叫做黃金比,其比值是(    )

A.       B.      C.      D.

查看答案和解析>>

同步練習(xí)冊答案