【題目】如圖,點P為正方形ABCD的對角線AC上的一點,連接BP并延長交CD于點E,交AD的延長線于點F,⊙O是△DEF的外接圓,連接DP.
(1)求證:DP是⊙O的切線;
(2)若tan∠PDC=,正方形ABCD的邊長為4,求⊙O的半徑和線段OP的長.
【答案】(1)見解析;(2)⊙O的半徑,.
【解析】
(1)連接OD,可證△CDP≌△CBP,可得∠CDP=∠CBP,由∠CBP+∠BEC=90°,∠BEC=∠OED=∠ODE,可證出∠ODP=90°,則DP是⊙O的切線;
(2)先求出CE長,在Rt△DEF中可求出EF長,證明△DPE∽△FPD,由比例線段可求出EP長,則OP可求出.
解:(1)連接OD,
∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,
∴△CDP≌△CBP(SAS),
∴∠CDP=∠CBP,
∵∠BCD=90°,
∴∠CBP+∠BEC=90°,
∵OD=OE,
∴∠ODE=∠OED,
又∵∠OED=∠BEC,
∴∠BEC=∠OED=∠ODE,
∴∠CDP+∠ODE=90°,
∴∠ODP=90°,
∴DP是⊙O的切線;
(2)∵∠CDP=∠CBE,
∴tan,
∴CE=,
∴DE=2,
∵∠EDF=90°,
∴EF是⊙O的直徑,
∴∠F+∠DEF=90°,
∴∠F=∠CDP,
在Rt△DEF中,,
∴DF=4,
∴==2,
∴,
∵∠F=∠PDE,∠DPE=∠FPD,
∴△DPE∽△FPD,
∴,
設(shè)PE=x,則PD=2x,
∴,
解得x=,
∴OP=OE+EP=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi)xOy中,某一次函數(shù)的圖象與反比例函數(shù)的y=的圖象交于A(1,m)、B(n,﹣1)兩點,與y軸交于C點.
(1)求該一次函數(shù)的解析式;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)校時需要從學(xué)校大門A、B、C三個入口處中的任意一處測量體溫,體溫正常方可進(jìn)校.
(1)甲同學(xué)在A入口處測量體溫的概率是 ;
(2)求甲、乙兩位同學(xué)在同一入口處測量體溫的概率.(用“畫樹狀圖”或“列表”的方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校30個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請你將條形統(tǒng)計圖補(bǔ)充完整,并估計全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩把大小不同、含30度角的三角板如圖放置,如圖,若AO=2,點N在線段OD上,且NO=1,點P是線段AB上的一個動點,將△COD固定,△AOB繞點O逆時針旋轉(zhuǎn)的過程中,線段PN長度的最大值是_____;最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的菱形ABCD中,BD=2,E、F分別是AD,CD上的動點(包含端點),且AE+CF=2,則線段EF長的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中點,,以為頂點在第一象限內(nèi)作正方形.反比例函數(shù)、分別經(jīng)過、兩點(1)如圖2,過、兩點分別作、軸的平行線得矩形,現(xiàn)將點沿的圖象向右運動,矩形隨之平移;
①試求當(dāng)點落在的圖象上時點的坐標(biāo)_____________.
②設(shè)平移后點的橫坐標(biāo)為,矩形的邊與,的圖象均無公共點,請直接寫出的取值范圍____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)實踐小組想利用鏡子的反射測量池塘邊一棵樹的高度AB.測量和計算的部分步驟如下:
①如圖,樹與地面垂直,在地面上的點C處放置一塊鏡子,小明站在BC的延長線上,當(dāng)小明在鏡子中剛好看到樹的頂點A時,測得小明到鏡子的距離CD=2米,小明的眼睛E到地面的距離ED=1.5米;
②將鏡子從點C沿BC的延長線向后移動10米到點F處,小明向后移動到點H處時,小明的眼睛G又剛好在鏡子中看到樹的頂點A,這時測得小明到鏡子的距離FH=3米;
③計算樹的高度AB;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com