如圖,在平面直角坐標系xOy中,拋物線y=
2
m
x2-2x
與x軸負半軸交于點A,頂點為B,且對稱軸與x軸交于點C.
(1)求點B的坐標(用含m的代數(shù)式表示);
(2)D為BO中點,直線AD交y軸于E,若點E的坐標為(0,2),求拋物線的解析式;
(3)在(2)的條件下,點M在直線BO上,且使得△AMC的周長最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
(1)∵y=
2
m
x2-2x=
2
m
(x2-mx+
1
4
m2)-
2
m
1
4
m2=
2
m
(x-
1
2
m)2-
1
2
m

∴拋物線的頂點B的坐標為(
1
2
m,-
1
2
m)


(2)令
2
m
x2-2x=0
,解得x1=0,x2=m.
∵拋物線y=
2
m
x2-2x
與x軸負半軸交于點A,
∴A(m,0),且m<0.
過點D作DF⊥x軸于F,如右圖;
由D為BO中點,DFBC,可得CF=FO=
1
2
CO

∴DF=
1
2
BC

由拋物線的對稱性得AC=OC.
∴AF:AO=3:4.
∵DFEO,
∴△AFD△AOE.
FD
OE
=
AF
AO

由E(0,2),B(
1
2
m,-
1
2
m)
,得OE=2,DF=-
1
4
m

-
1
4
m
2
=
3
4

∴m=-6.
∴拋物線的解析式為y=-
1
3
x2-2x


(3)依題意,得A(-6,0)、B(-3,3)、C(-3,0).可得直線OB的解析式為y=-x,直線BC為x=-3.
作點C關(guān)于直線BO的對稱點C′(0,3),連接AC′交BO于M,則M即為所求.
由A(-6,0),C′(0,3),可得直線AC′的解析式為y=
1
2
x+3

y=
1
2
x+3
y=-x
解得
x=-2
y=2.

∴點M的坐標為(-2,2).
由點P在拋物線y=-
1
3
x2-2x
上,設P(t,-
1
3
t2-2t
).
(。┊擜M為所求平行四邊形的一邊時.
①如右圖,過M作MG⊥x軸于G,過P1作P1H⊥BC于H,
則xG=xM=-2,xH=xB=-3.
∵四邊形AMP1Q1為平行四邊形,
∴AM=P1Q1,∠P1Q1H=∠AKC,
∵BKMG,
∴∠AMG=∠AKC,
∴∠P1Q1H=∠AMG,
∠AGM=∠P1HQ1
∠AMG=∠P1Q1H
AM=P1Q1

∴△AMG≌△P1Q1H.
∴P1H=AG=4.
∴t-(-3)=4.
∴t=1.
P1(1,-
7
3
)

②如右圖,同①方法可得P2H=AG=4.
∴-3-t=4.
∴t=-7.
P2(-7,-
7
3
)

(ⅱ)當AM為所求平行四邊形的對角線時,如右圖;
過M作MH⊥BC于H,過P3作P3G⊥x軸于G,則xH=xB=-3,xG=xP3=t.
由四邊形AP3MQ3為平行四邊形,可證△AP3G≌△MQ3H.
可得AG=MH=1.
∴t-(-6)=1.
∴t=-5.
P3(-5,
5
3
)

綜上,點P的坐標為P1(1,-
7
3
)
、P2(-7,-
7
3
)
、P3(-5,
5
3
)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的頂點C的橫坐標為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點,且A點在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
(1)求二次函數(shù)的解析式;
(2)若B點的橫坐標為3,過拋物線頂點且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
(3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個單位,向下平移t個單位(t>2)的圖象與x軸交于E、F兩點,當t為何值時,過B、E、F三點的圓的面積最?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

設拋物線y=ax2+bx+c與X軸交于兩不同的點A(-1,0),B(m,0),(點A在點B的左邊),與y軸的交點為點C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點D為該拋物線上的一點,且橫坐標為1,點E為過A點的直線y=x+1與該拋物線的另一交點.在X軸上是否存在點P,使得以P、B、D為頂點的三角形與△AEB相似?若存在,求出點P的坐標;若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點H、Q分別在線段AC、BC上,若設F點坐標為(t,0),矩形FGHQ的面積為S,當S取最大值時,連接FH并延長至點M,使HM=k•FH,若點M不在該拋物線上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+mx+n(n≠0)與直線y=x交于A、B兩點,與y軸交于點C,OA=OB,BCx軸.
(1)求拋物線的解析式;
(2)設D、E是線段AB上異于A、B的兩個動點(點E在點D的上方),DE=
2
,過D、E兩點分別作y軸的平行線,交拋物線于F、G,若設D點的橫坐標為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時,y有最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一個拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標系中如圖,求拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

草莓是對薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營養(yǎng)價值高,含豐富維生素C,有幫助消化的功效,與此同時,草莓還可以鞏固齒齦,清新口氣,潤澤喉部.我市某草莓種植基地去年第x個月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
月份x123456789101112
13種植某數(shù)y6810121416161616161616
每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出z與x之間滿足的函數(shù)關(guān)系式;
(2)該草莓種植基地在去年哪個月的總收益最大,求出這個最大收益;
(3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.(參考數(shù)據(jù):
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用長度為20m的金屬材料制成如圖所示的金屬框,下部為矩形,上部為等腰直角三角形,其斜邊長為2xm.當該金屬框圍成的圖形面積最大時,圖形中矩形的相鄰兩邊長各為多少?請求出金屬框圍成的圖形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(b、c為常數(shù)).
(1)若二次函數(shù)的圖象經(jīng)過A(-2,-3)和B(2,5)兩點,求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點坐標及對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=1,∠A=45°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DEAB,將正方形平移,使點D保持在AC上(D不與A重合),設AF=x,正方形與△ABC重疊部分的面積為y.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)x為何值時y的值最大?
(3)x在哪個范圍取值時y的值隨x的增大而減小?

查看答案和解析>>

同步練習冊答案