【題目】如圖,AB是⊙O的直徑,點C,D在圓上,且四邊形AOCD是平行四邊形,過點D作⊙O的切線,分別交OA的延長線與OC的延長線于點E,F(xiàn),連接BF.
(1)求證:BF是⊙O的切線;
(2)已知圓的半徑為1,求EF的長.
【答案】(1)證明見解析;(2)EF=2.
【解析】試題分析:(1)、先證明四邊形AOCD是菱形,從而得到∠AOD=∠COD=60°,再根據(jù)切線的性質(zhì)得∠FDO=90°,接著證明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根據(jù)切線的判定定理即可得到結(jié)論;(2)、在Rt△OBF中,利用60度的正切的定義求解.
試題解析:(1)、連結(jié)OD,如圖,∵四邊形AOCD是平行四邊形,而OA=OC, ∴四邊形AOCD是菱形,
∴△OAD和△OCD都是等邊三角形, ∴∠AOD=∠COD=60°, ∴∠FOB=60°, ∵EF為切線, ∴OD⊥EF,
∴∠FDO=90°,在△FDO和△FBO中, ∴△FDO≌△FBO, ∴∠ODF=∠OBF=90°,
∴OB⊥BF, ∴BF是⊙O的切線;
(2)、在Rt△OBF中,∵∠FOB=60°, 而tan∠FOB=, ∴BF=1×tan60°=. ∵∠E=30°,
∴EF=2BF=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正數(shù),滿足如下兩個條件:a+b+c=32 ①② 是否存在以 為三邊長的三角形?如果存在,求出三角形的最大內(nèi)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果電影票上的“5排2號”記作(5,2),那么(4,3)表示( )
A. 3排5號 B. 5排3號 C. 4排3號 D. 3排4號
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
① 求證:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲隊修路500米與乙隊修路800米所用天數(shù)相同,乙隊比甲隊每天多修30米,問甲隊每天修路多少米?
解:設(shè)甲隊每天修路x米,用含x的代表式完成表格:
甲隊每天修路長度(單位:米) | 乙隊每天修路長度(單位:米) | 甲隊修500米所用天數(shù)(單位:天) | 乙隊修800米所用天數(shù)(單位:天) |
x |
|
關(guān)系式:甲隊修500米所用天數(shù)=乙隊修800米所用天數(shù)
根據(jù)關(guān)系式列方程為:
解得:
檢驗:
答: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與x軸相交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)y=的圖象交點為C(m,4)求:
(1)一次函數(shù)y=kx+b的解析式;
(2)若點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,直接寫出點D的坐標(biāo)。
(3)在x軸上求一點P使△POC為等腰三角形,請直接寫出所有符合條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,不相等的一組是( )
A.-(+7), -|-7|
B.-(+7),-|+7|
C.+(-7), -(+7)
D.+(+7), -|-7|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com