【題目】(9)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

【答案】解:(1四邊形ABCD是菱形,∴AB=AD。

當(dāng),即m=1時(shí),四邊形ABCD是菱形。

m=1代入,得。

。

菱形ABCD的邊長(zhǎng)是。

2)把AB=2代入,得,解得。

代入,得

解得,。∴AD=

四邊形ABCD是平行四邊形,

∴□ABCD的周長(zhǎng)是22+=5

【解析】

(1)根據(jù)菱形的性質(zhì)可得出AB=AD,由根的判別式即可得出關(guān)于m的一元二次方程,解之即可得出m的值;
(2)將x=2代入一元二次方程可求出m的值,再根據(jù)根與系數(shù)的關(guān)系即可得出AB+AD的值,利用平行四邊形的性質(zhì)即可求出平行四邊形ABCD的周長(zhǎng).

解:(1)∵四邊形ABCD是菱形,

AB=AD,

AB、AD的長(zhǎng)是關(guān)于x的一元二次方程x2﹣mx+=0的兩個(gè)實(shí)數(shù)根,

=(﹣m)2﹣4()=m2﹣2m+1=0,

解得:m=1.

∴當(dāng)m1時(shí),四邊形ABCD是菱形.

(2)將x=2代入x2﹣mx+=0中,得:4﹣2m+=0,

解得:m=/p>

AB、AD的長(zhǎng)是關(guān)于x的一元二次方程x2﹣mx+=0的兩個(gè)實(shí)數(shù)根,

AB+AD=m=,

∴平行四邊形ABCD的周長(zhǎng)=2(AB+AD)=2×=5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各數(shù)填在相應(yīng)的集合里.

,9,0+4.3,|0.5|,﹣(+7),18%,(﹣34,﹣(﹣25,﹣62

正有理數(shù)集合:{};

正分?jǐn)?shù)集合:{};

負(fù)整數(shù)集合:{};

自然數(shù)集合:{}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,BD=6,AD=3,則AOD= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn).點(diǎn)ECD上,且DE=2CE,連接BE.過(guò)點(diǎn)CCF⊥BE,垂足是F,連接OF,則OF的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知成正比例,且時(shí),.

(1)寫(xiě)出之間的函數(shù)關(guān)系系;

(2)計(jì)算時(shí),的值;

(3)計(jì)算時(shí),的值;

(4)若點(diǎn)在這個(gè)函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB=12cm,CAB延長(zhǎng)線上一點(diǎn),CPO相切于點(diǎn)P,過(guò)點(diǎn)B作弦BDCP,連接PD

1)求證:點(diǎn)P的中點(diǎn);

2)若C=∠D,求四邊形BCPD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACBC,AD平分∠BACBC于點(diǎn)D,DEADAB于點(diǎn)E,MAE的中點(diǎn),BFBCCM的延長(zhǎng)線于點(diǎn)F,BD=4,CD=3.下列結(jié)論:①∠AED=ADC; ;ACBE=12;3BF=4AC;其中正確結(jié)論的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)這次調(diào)查的市民人數(shù)為_(kāi)_______人,m=________,n=________;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該市約有市民100000人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABP中,CBP邊上一點(diǎn),∠PAC=PBA,OABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E

1)求證:PA是⊙O的切線;

2)過(guò)點(diǎn)CCFAD,垂足為點(diǎn)F,延長(zhǎng)CFAB于點(diǎn)G,若AGAB=12,求AC的長(zhǎng);

3)在滿(mǎn)足(2)的條件下,若AFFD=12,GF=1,求⊙O的半徑及sinACE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案