【題目】如圖,中,,,,邊與邊交于點(不與點,重合),點,異側,的內心.

1)求證:;

2)設,用含的式子表示___________,則求的最大值為_______

3)當時,的取值范圍為,則________,________

【答案】1)見解析;(26-x3;(3105°,145°

【解析】

1)由條件易證△ABC≌△ADE,得∠BAC=∠DAE即可.

2PDADAP6x,∵點P在線段BC上且不與B、C重合,∴AP的最小值即APBCAP的長度,此時PD可得最大值.

3I為△APC的內心,即I為△APC角平分線的交點,應用“三角形內角和等于180°“及角平分線定義即可表示出∠AIC,從而得到mn的值.

1)證明:在中,(如圖1

2)解:

時,值最小即的值最大.

的最大值為3

故答案為:6x,3;

3)如圖2,設∠BAPα,則∠APCα30°,

∵∠BAC80°,∠B30°,

∴∠PCA180°-∠BAC-∠B70°,∠PAC=∠BAC-∠BAP80°-α,

I為△APC的內心

AI、CI分別平分∠PAC,∠PCA,

∴∠IACPAC,∠ICAPCA

∴∠AIC180°-(∠IAC+∠ICA

180°-(∠PAC+∠PCA

180°-80°-α70°)

α105°

0α80°,

105°<α105°<145°,即105°<∠AIC145°,

m105,n145

故答案為:105°145°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設點P運動的時間為秒,正方形重疊部分的面積為

1)用含有的代數(shù)式表示線段的長.

2)當點落在的邊上時,求的值.

3)求的函數(shù)關系式.

4)當點P在線段AD上運動時,做點N關于CD的對稱點,當的某一個頂點的連線平分的面積時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是雙曲線y=在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰RtABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列賦予實際意義的敘述中不正確的是(

A. 若葡萄的價格是4/千克,則表示買千克葡萄的金額

B. 表示一個正方形的邊長,則表示這個正方形的周長

C. 將一個小木塊放在水平桌面上,若4表示小木塊與桌面的接觸面積,表示桌面受到的壓強,則表示小木塊對桌面的壓力

D. 4分別表示一個兩位數(shù)中的十位數(shù)字和個位數(shù)字,則表示這個兩位數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為8,的中點,邊上的動點,連結,以點為圓心,長為半徑作.

1)當________時,;

2)當與正方形的邊相切時,求的長;

3)設的半徑為,請直接寫出正方形恰好有兩個頂點在圓內的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°∠BAC的角平分線ADBC邊于D.以AB上某一點O為圓心作⊙O,使⊙O經過點A和點D

1)判斷直線BC⊙O的位置關系,并說明理由;

2)若AC=3,∠B=30°

⊙O的半徑;

⊙OAB邊的另一個交點為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀理解:

如圖①,在中,若,,求邊上的中線的取值范圍.

可以用如下方法:將繞著點逆時針旋轉得到,在中,利用三角形三邊的關系即可判斷中線的取值范圍是______;

2)問題解決:

如圖②,在中,邊上的中點,于點,于點,于點,連接,求證:;

3)問題拓展:

如圖③,在四邊形中,,,以為頂點作一個的角,角的兩邊分別交、兩點,連接,探索線段,之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水8噸以內(包括8噸)和用水8噸以上兩種收費標準(收費標準:每噸水的價格),某用戶每月應交水費y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.

1)求出自來水公司在這兩個用水范圍內的收費標準;

2)若芳芳家6月份共交水費28.1元,請寫出用水量超過8噸時應交水費y(元)與用水量x(噸)之間的函數(shù)關系,并求出芳芳家6月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快車與慢車分別從甲乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后按原路原速返回,快車比慢車晚到達甲地,快慢兩車距各自出發(fā)地的路程與所用的時間的關系如圖所示.

1)由圖可知快車的速度為______;慢車的速度為______

2)求出發(fā)長時間后,快慢兩車距各自出發(fā)地的路程相等;

3)快慢兩車出發(fā)多少相距?直接寫出答案.

查看答案和解析>>

同步練習冊答案