在平面直角坐標(biāo)系中,直線(k為常數(shù)且k≠0)分別交x軸、y軸于點A、B,⊙O半徑為個單位長度.
⑴如圖甲,若點A在x軸正半軸上,點B在y軸正半軸上,且OA=OB.
①求k的值;
②若b=4,點P為直線上的動點,過點P作⊙O的切線PC、PD,切點分別為C、D,當(dāng)PC⊥PD時,求點P的坐標(biāo).
⑵若,直線將圓周分成兩段弧長之比為1∶2,求b的值.(圖乙供選用)
(1)
①k=-1
②P的坐標(biāo)為(1,3)或(3,1)
(2)b的值為或
解析:⑴①根據(jù)題意得:B的坐標(biāo)為(0,b),∴OA=OB=b,
∴A的坐標(biāo)為(b,0),代入y=kx+b得k=-1.
②過P作x軸的垂線,垂足為F,連結(jié)OD.
∵PC、PD是⊙O的兩條切線,∠CPD=90°,
∴∠OPD=∠OPC=∠CPD=45°,
∵∠PDO=90°,,∠POD=∠OPD=45°,
∴OD=PD=,OP=.
∵P在直線y=-x+4上,
設(shè)P(m,-m+4),則OF=m,PF=-m+4,
∵∠PFO=90°, OF2+PF2=PO2,
∴ m2+ (-m+4)2=()2,
解得m=1或3,
∴P的坐標(biāo)為(1,3)或(3,1)
⑵分兩種情形,y=-x+,或y=-x-。
直線將圓周分成兩段弧長之比為1∶2,可知其所對圓心角為120°,
如圖,畫出弦心距OC,可得弦心距OC=,
又∵直線中∴直線與x軸交角的正切值為,即,∴AC=,進而可得AO=,即直線與與x軸交于點(,0).
所以直線與y軸交于點(,0),所以b的值為.
當(dāng)直線與x軸、y軸的負半軸相交,同理可求得b的值為.
綜合以上得:b的值為或.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com