在平面直角坐標系XOY中,一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發(fā),其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.

【答案】分析:(1)根據(jù)一次函數(shù)圖象與坐標軸的交點求法,分別求出坐標即可;
(2)根據(jù)相似三角形的判定得出△APQ∽△AOB,以及當⊙Q在y軸右側與y軸相切時,當⊙Q在y軸的左側與y軸相切時,分別分析得出答案.
解答:解:(1)∵一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點,
∴y=0時,x=-4,
∴A(-4,0),AO=4,
∵圖象與y軸交點坐標為:(0,3),BO=3,
∴AB=5;
(2)由題意得:AP=4t,AQ=5t,==t,
又∠PAQ=∠OAB,
∴△APQ∽△AOB,
∴∠APQ=∠AOB=90°,
∵點P在l1上,
∴⊙Q在運動過程中保持與l1相切,
①當⊙Q在y軸右側與y軸相切時,設l2與⊙Q相切于F,由△APQ∽△AOB,得:
,
∴PQ=6;
故AQ=10,則運動時間為:=2(秒);
連接QF,則QF=PQ,
∵直線l2過點C(a,0)且與直線l1垂直,F(xiàn)Q⊥l1,
∴∠APQ=∠QFC=90°,AP∥FQ,
∴∠PAQ=∠FQC,
∴△QFC∽△APQ,
∴△QFC∽△APQ∽△AOB,
得:,
,

∴QC=,
∴a=OQ+QC=OC=,
②如圖2,當⊙Q在y軸的左側與y軸相切時,設l2與⊙Q相切于E,由△APQ∽△AOB得:=
∴PQ=,
則AQ=4-=2.5,
∴則運動時間為:=(秒);
故當點P、Q運動了2秒或秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,
連接QE,則QE=PQ,
∵直線l2過點C(a,0)且與直線l1垂直,⊙Q在運動過程中保持與l1相切于點P,
∴∠AOB=90°,∠APQ=90°,
∵∠PAO=∠BAO,
∴△APQ∽△AOB,
同理可得:△QEC∽△APQ∽△AOB得:=,
=,=
∴QC=,a=QC-OQ=,
∴a的值是:,
點評:此題主要考查了切線的性質(zhì)以及相似三角形的判定與性質(zhì),利用數(shù)形結合進行分析注意分類討論才能得出正確答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設此拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達式;
(2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習冊答案