計算tan·sin-4sin·cos=________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

計算或化簡:
(1)
3
cos30°+
2
sin45°;
(2)
tan45°-cos60°
sin60°
•tan 30°;
(3)(sin60°+cos 45°)(sin 60°-cos 45°);
(4)6tan230°-
3
sin 60°-2sin 45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,沙涇河的一段兩岸a、b互相平行,C、D是河岸a上間隔60米的兩個電線桿.小明在河岸b上的A處測得∠DAB=35°,然后沿河岸b走了120米到達B處,測得∠CBF=70°,求該段河流的寬度CF的值.(結果精確到0.1米,計算中可能用到的數(shù)據(jù)如下表)
角度α sinα cosα tanα
35° 0.57 0.82 0.70
70° 0.94 0.34 2.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

作圖、證明與計算
如圖,在單位長度為1的正方形網(wǎng)格中,△ABC的三個頂點均在格點上,E為BC中點,請按要求完成下列各題:
(1)畫AD∥BC(D為格點),連接CD;
(2)判斷四邊形ABCD的形狀;
(3)求sin∠ADC的值和tan∠CAE的值;
(4)求△ABC的外接圓半徑和內切圓半徑(保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•六盤水)閱讀材料:
關于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosasinβ
tan(α±β)=
tanα±tanβ
1
+
.
tanα•tanβ

利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:tan15°=tan(45°-30°)=
tan45°-tan30°
1+tan45°•tan30°
=
1-
3
3
1+1×
3
3
=
(3-
3
)(3-
3
)
(3+
3
)(3-
3
)
=
12-6
3
6
=2-
3

根據(jù)以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}
(1)計算:sin15°;
(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據(jù)
3
=1.732
,
2
=1.414

查看答案和解析>>

同步練習冊答案