【題目】已知上一點,.

(Ⅰ)如圖①,過點的切線,與的延長線交于點,求的大小及的長;

(Ⅱ)如圖②,上一點,延長線與交于點,若,求的大小及的長.

【答案】(Ⅰ),PA=4;(Ⅱ),

【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度

(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點CCDAB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解

解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.

∵∠OAC=60°OA=OC,∴△OAC是等邊三角形.

∴∠AOC=60°.

PC是○O的切線,OC為○O的半徑,

PC⊥OC,即∠OCP=90°∴∠P=30°.

PO=2CO=8.

PA=PO-AO=PO-CO=4.

(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,

∴∠AOC=ACO=OAC=60°∴∠AQC=30°.

AQ=CQ,∴∠ACQ=QAC=75°

∴∠ACQ-ACO=QAC-OAC=15°即∠QCO=QAO=15°.

∴∠APC=AQC+QAO=45°.

如圖②,過點CCDAB于點D.

∵△OAC是等邊三角形,CDAB于點D,

∴∠DCO=30°,AD=AO=CO=2.

∵∠APC=45°,∴∠DCQ=APC=45°

PD=CD

Rt△DOC中,OC=4∠DCO=30°,∴OD=2,∴CD=2

PD=CD=2

AP=AD+DP=2+2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是半圓O上的一點,AB是⊙O的直徑,D的中點,作DEAB于點E,連接ACDE于點F,求證:AF=DF.

下面是小明的做法,請幫他補充完整(包括補全圖形)

解:補全半圓O為完整的⊙O,連接AD,延長DE交⊙O于點H(補全圖形)

D的中點,

.

DEAB,AB是⊙O的直徑,

)(填推理依據(jù))

∴∠ADF=FAD )(填推理依據(jù))

AF=DF )(填推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于、兩點,交軸于點,點的坐標為,直線經(jīng)過點、.

1)求拋物線的函數(shù)表達式;

2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;

3)過點的直線交直線于點,連接,當直線與直線的一個夾角等于3倍時,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大雁塔是現(xiàn)存最早規(guī)模最大的唐代四方樓閣式磚塔,被國務院批準列人第一批全國重點文物保護單位,某校社會實踐小組為了測量大雁塔的高度,在地面上處垂直于地面豎立了高度為米的標桿,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上,測得米,將標桿向后平移到點處,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上(,點,點,點與古塔底處的點在同一直線上) ,這時測得米,米,請你根據(jù)以上數(shù)據(jù),計算古塔的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P在函數(shù)yx0)的圖象上從左向右運動,PAy軸,交函數(shù)y=﹣x0)的圖象于點A,ABx軸交PO的延長線于點B,則△PAB的面積( 。

A.逐漸變大B.逐漸變小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,OBC的中點,作⊙OAC相切于點D

1)求證:AB與⊙O相切;

2)延長ACE,使得CEAC,連接BE交⊙O與點F、M,若AB4,求FM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦AB的長為2,點C是優(yōu)弧AB上的一動點,BDBC交直線AC于點D,當點C從△ABC面積最大時運動到BC最長時,點D所經(jīng)過的路徑長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB120°,∠DCB60°CBCD,AC8,則四邊形ABCD的面積為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形MNPQ中,動點R從點N出發(fā),沿著N-P-Q-M方向移動至M停止,設R移動路程為x,MNR面積為y,那么yx的關系如圖②,下列說法不正確的是(

A.x=2時,y=5B.矩形MNPQ周長是18

C.x=6時,y=10D.y=8時,x=10

查看答案和解析>>

同步練習冊答案