【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個動點P,當(dāng)點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標(biāo).
【答案】
(1)解:∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,
∴方程x2+bx+c=0的兩根為x=﹣1或x=3,
∴﹣1+3=﹣b,
﹣1×3=c,
∴b=﹣2,c=﹣3,
∴二次函數(shù)解析式是y=x2﹣2x﹣3
(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,
∴拋物線的對稱軸x=1,頂點坐標(biāo)(1,﹣4)
(3)解:設(shè)P的縱坐標(biāo)為|yP|,
∵S△PAB=8,
∴ AB|yP|=8,
∵AB=3+1=4,
∴|yP|=4,
∴yP=±4,
把yP=4代入解析式得,4=x2﹣2x﹣3,
解得,x=1±2 ,
把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,
解得,x=1,
∴點P在該拋物線上滑動到(1+2 ,4)或(1﹣2 ,4)或(1,﹣4)時,滿足S△PAB=8.
【解析】(1)由于拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,那么可以得到方程x2+bx+c=0的兩根為x=﹣1或x=3,然后利用根與系數(shù)即可確定b、c的值.(2)把拋物線的解析式化成頂點式即可;(3)根據(jù)S△PAB=8,求得P的縱坐標(biāo),把縱坐標(biāo)代入拋物線的解析式即可求得P點的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,BC=4cm , E為AD的中點,F、G分別為BE、CD的中點,則FG=( 。cm .
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子.
(1)以水平的地面為x軸,兩棵樹間距離的中點O為原點,建立如圖所示的平面直角坐標(biāo)系,求出拋物線的解析式;
(2)求繩子的最低點離地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標(biāo)為( )
A.( , )
B.(2,2)
C.( ,2)
D.(2, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,點E為垂足,連接DF,則∠CDF為( )
A.80°
B.70°
C.65°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.求證:BD⊥CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com