【題目】下面我們做一次折疊活動:

第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過程,完成下列問題:
(1)求CD的長.
(2)請判斷四邊形ABQD的形狀,并說明你的理由.

【答案】
(1)解:∵∠M=∠N=∠MBC=90°,

∴四邊形MNCB是矩形,

∵MB=MN=2,

∴矩形MNCB是正方形,

∴NC=CB=2,

由折疊得:AN=AC= NC=1,

Rt△ACB中,由勾股定理得:AB= =

∴AD=AB= ,

∴CD=AD﹣AC= ﹣1;


(2)解:四邊形ABQD是菱形,理由是:

由折疊得:AB=AD,∠BAQ=∠QAD,

∵BQ∥AD,

∴∠BQA=∠QAD,

∴∠BAQ=∠BQA,

∴AB=BQ,

∴BQ=AD,BQ∥AD,

∴四邊形ABQD是平行四邊形,

∵AB=AD,

∴四邊形ABQD是菱形.


【解析】(1)首先證明四邊形MNCB為正方形,然后再依據(jù)折疊的性質(zhì)得到:CA=1,AB=AD,最后再依據(jù)CD=AD-AC求解即可;
(2)根據(jù)平行線的性質(zhì)和折疊的性質(zhì)可得到∠BAQ=∠BQA,然后依據(jù)等角對等邊的性質(zhì)得到AB=BQ,接下來,依據(jù)一組對邊平行且相等的四邊形為平行四邊形可證明四邊形ABQD是平行四邊形,再由AB=AD,可得四邊形ABQD是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=45°,點M、N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線AB:y= x+4交x軸于點A,交y軸于點B.直線CD:y=﹣ x﹣1與直線AB相交于點M,交x軸于點C,交y軸于點D.

(1)直接寫出點B和點D的坐標;
(2)若點P是射線MD上的一個動點,設點P的橫坐標是x,△PBM的面積是S,求S與x之間的函數(shù)關(guān)系;
(3)當S=20時,平面直角坐標系內(nèi)是否存在點E,使以點B、E、P、M為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量q(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度,密度k(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).

為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間關(guān)系的部分數(shù)據(jù)如下表:

(1)根據(jù)上表信息,下列三個函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準確的是 (只填上正確答案的序號)

q=90v+100;q=

(2)請利用(1)中選取的函數(shù)關(guān)系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?

(3)已知q,v,k滿足q=vk,請結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題.

市交通運行監(jiān)控平臺顯示,當12v18時道路出現(xiàn)輕度擁堵.試分析當車流密度k在什么范圍時,該路段將出現(xiàn)輕度擁堵;

在理想狀態(tài)下,假設前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年下半年開始,不同品牌的共享單車出現(xiàn)在城市的大街小巷.現(xiàn)已知A品牌共享單車計費方式為:初始騎行單價為1元/半小時,不足半小時按半小時計算.內(nèi)設邀請機制,每邀請一位好友注冊認證并充值押金成功,雙方騎行單價均降價0.1元/半小時,騎行單價最低可降至0.1元/半小時(比如,某用戶邀請了3位好友,則騎行單價為0.7元/半小時).B品牌共享單車計費方式為:0.5元/半小時,不足半小時按半小時計算.
(1)某用戶準備選擇A品牌共享單車使用,設該用戶邀請好友x名(x為整數(shù),x≥0),該用戶的騎行單價為y元/半小時.請寫出y關(guān)于x的函數(shù)解析式.
(2)若有A,B兩種品牌的共享單車各一輛供某用戶一人選擇使用,請你根據(jù)該用戶已邀請好友的人數(shù),給出經(jīng)濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算a·a3的結(jié)果是( )

A. a4B. a4C. a3D. a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a2 0162b2 015×2 017,則( )

A. abB. abC. abD. ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x2y﹣y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=|x|﹣2的圖象與性質(zhì)進行了探究.
下面是小華的探究過程,請補充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);
如表是y與x的幾組對應值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

①m=;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n=;
(2)①如圖,在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;

(3)該函數(shù)的最小值為;
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點,當y1≥y時x的取值范圍是

查看答案和解析>>

同步練習冊答案