【題目】如圖,正方形ABCD,點P在射線CB上運動(不包含點B、C),連接DP,交AB于點M,作BEDP于點E,連接AE,作∠FAD=EAB,FADP于點F

(1)如圖a,當點PCB的延長線上時,

①求證:DF=BE;

②請判斷DE、BEAE之間的數(shù)量關系并證明;

(2)如圖b,當點P在線段BC上時,DEBE、AE之間有怎樣的數(shù)量關系?請直接寫出答案,不必證明;

(3)如果將已知中的正方形ABCD換成矩形ABCD,且ADAB=1,其他條件不變,當點P在射線CB上時,DE、BEAE之間又有怎樣的數(shù)量關系?請直接寫出答案,不必證明.

【答案】1)詳見解析;②DE=BE+AE,理由詳見解析;(2DE=AEBE;(3DE=2AE+BEDE=2AEBE

【解析】

1)①由正方形的性質得到ADAB,∠BAD90°,判斷出ABE≌△ADF,即可;②由①得到ABE≌△ADF,并且判斷出EAF為直角三角形,用勾股定理即可;

2)先由正方形的性質和已知條件判斷出ABE≌△ADF,再用判斷出EAF為直角三角形,用勾股定理即可;

3)分兩種情況討論,先由正方形的性質和已知條件判斷出ABE∽△ADF,AFAE,DFBE,再判斷出EAF為直角三角形,用勾股定理結合圖形可得結論.

證明:(1)①正方形ABCD中,AD=AB,∠ADM+AMD=90°

BEDP,

∴∠EBM+BME=90°,

∵∠AMD=BME

∴∠EBM=ADM,

ABEADF中,

∴△ABE≌△ADF,

DF=BE;

DE=BE+AE

理由:由(1)有ABE≌△ADF,

AE=AF,∠BAE=DAF,

∴∠BAE+FAM=DAF+FAM,

∴∠EAF=BAD=90°,

EF=AE,

DE=DF+EF,

DE=BE+AE

2DE=AEBE;

理由:正方形ABCD中,AD=AB,∠BAD=BAE+DAE=90°,

∵∠FAD=EAB,

∴∠EAF=BAD=90°

∴∠AFE+AEF=90°

BEDP,

∴∠BEA+AEF=90°,

∴∠BEA=AFE,

∵∠FAD=EAB,AD=AB

∴△ABE≌△ADF,

AE=AF,BE=DF

∵∠EAF=90°

EF=AE,

EF=DF+DE=AE,

DE=AEDF=AEBE;

3DE=2AE+BEDE=2AEBE

①如圖1所示時,

正方形ABCD中,∠ADM+AMD=90°

BEDP,

∴∠EBM+BME=90°

∵∠AMD=BME,

∴∠EBM=ADM

∵∠FAD=EAB

∴△ABE∽△ADF,

,

ADAB=1,

,

AF=AEDF=BE

∵∠FAD=EAB

∴∠EAF=EAB+BAF=FAD+BAF=BAD=90°,

EF==2AE=DEDF=DEBE

即:DE=2AE+BE;

②如圖2所示,

∵∠DAF=BAE,

∴∠EAF=BAD=90°

∵∠DAF=BAE,

∴△BAE∽△DAF,

ADAB=1,

AF=AE,DF=BE

∵∠EAF=90°,

根據(jù)勾股定理得,EF==2AE=DE+DF=DE+BE,

DE=2AEBE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=與拋物線y=交于A、B兩點,且點Ax軸上,點B的橫坐標為-4,點P為直線AB上方的拋物線上一動點(不與點AB重合),過點Px軸的垂線交直線AB于點Q,PHABH

1)求b的值及sinPQH的值;

2)設點P的橫坐標為t,用含t的代數(shù)式表示點P到直線AB的距離PH的長,并求出PH之長的最大值以及此時t的值;

3)連接PB,若線段PQPBH分成成PQBPQH的面積相等,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DFBC于點E

1)求證:DCE≌△BFE;

2)若CD=2,ADB=30°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿折線BE-ED-DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、點Q同時開始運動,設運動時間為ts),BPQ的面積為y),已知yt之間的函數(shù)圖象如圖2所示.

給出下列結論:①當0t≤10時,△BPQ是等腰三角形;②=48;③當14t22時,y=110-5t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤△BPQ與△ABE相似時,t=14.5

其中正確結論的序號是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據(jù)調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖,,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為   ,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:

品名

獼猴桃

芒果

批發(fā)價千克

20

40

零售價千克

26

50

他購進的獼猴桃和芒果各多少千克?

如果獼猴桃和芒果全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,FBC上兩點,且BE=CF,AF=DE

求證:(1△ABF≌△DCE

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A、B兩點的縱坐標分別為31,反比例函數(shù)y的圖象經(jīng)過AB兩點,則點D的坐標為( )

A. (213)B. (2+1,3)

C. (213)D. (2+1,3)

查看答案和解析>>

同步練習冊答案