(2008•懷化)如圖,在平行四邊形ABCD中,DB=DC,∠A=65°,CE⊥BD于E,則∠BCE=    度.
【答案】分析:平行四邊形對角相等,所以可先求出∠BCD,在等腰三角形中,利用等邊對等角這一性質,可以求出∠DBC,再利用直角三角形兩銳角互余即可求解.
解答:解:∵A=65°,
∴∠BCD=65°;
∵DB=DC,
∴∠BCD=∠DBC=65°,
∵CE⊥BD,
∴∠CEB=90°,
∴∠BCE=90°-∠DBC=25°.
故答案為25.
點評:主要考查了平行四邊形的基本性質,并利用性質解題.平行四邊形基本性質:①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年山東省濟南市歷下區(qū)中考數(shù)學三模試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省宜昌市枝江市雅畈中學九年級中考數(shù)學強化訓練專題3 二次函數(shù)(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(31)(解析版) 題型:解答題

(2008•懷化)如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=的圖象交于A、B兩點.
(1)求出A、B兩點的坐標;
(2)根據圖象求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省湛江市初中畢業(yè)水平模擬考試數(shù)學試卷(解析版) 題型:解答題

(2008•懷化)如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數(shù)表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省懷化市中考數(shù)學試卷(解析版) 題型:解答題

(2008•懷化)如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=的圖象交于A、B兩點.
(1)求出A、B兩點的坐標;
(2)根據圖象求使正比例函數(shù)值大于反比例函數(shù)值的x的范圍.

查看答案和解析>>

同步練習冊答案