已知:m2=n+2,n2=m+2(m≠n).求:m2+2mn+n2的值.

 

【答案】

 

【解析】

試題分析:先由已知條件得出m+n的值,再把m2+2mn+n2化成完全平方的形式,再進(jìn)行計(jì)算即可;

解:由已知兩式相減,得:m2﹣n2=n﹣m,

∴(m﹣n)(m+n+1)=0,

又∵m≠n,∴m+n=﹣1,

∴m2+2mn+n2=(m+n)2=(﹣1)2=1;

考點(diǎn):因式分解的應(yīng)用.

點(diǎn)評(píng):本題考查了因式分解的應(yīng)用,觀察出已知條件得出m+n的值是解題的關(guān)鍵;

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知y=m2+m+4,若m為整數(shù),在使得y為完全平方數(shù)的所有m的值中,設(shè)m的最大值為a,最小值為b,次小值為c.(注:一個(gè)數(shù)如果是另一個(gè)整數(shù)的完全平方,那么我們就稱(chēng)這個(gè)數(shù)為完全平方數(shù).)
(1)求a、b、c的值;
(2)對(duì)a、b、c進(jìn)行如下操作:任取兩個(gè)求其和再除以
2
,同時(shí)求其差再除以
2
,剩下的另一個(gè)數(shù)不變,這樣就仍得到三個(gè)數(shù).再對(duì)所得三個(gè)數(shù)進(jìn)行如上操作,問(wèn)能否經(jīng)過(guò)若干次上述操作,所得三個(gè)數(shù)的平方和等于2008證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:m2+n2+mn+m-n+1=0,則
1
m
+
1
n
的值等于(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知y=(m2-1)xm2-m+1是二次函數(shù),則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:m2-3m+1=0,則m2+
1m2
=
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知(m2-1)x2-(m+1)x+8=0是關(guān)于x的一元一次方程,求200(m+x)(x-2m)+m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案