【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AO=OC,BO=OD,且∠AOB=2∠OAD.
(1)求證:四邊形ABCD是矩形;
(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度數(shù).
【答案】(1)證明見解析;(2)∠ADO==36°.
【解析】
(1)先判斷四邊形ABCD是平行四邊形,繼而根據(jù)已知條件推導(dǎo)出AC=BD,然后根據(jù)對角線相等的平行四邊形是矩形即可;
(2)設(shè)∠AOB=4x,∠ODC=3x,則∠OCD=∠ODC=3x.,在△ODC中,利用三角形內(nèi)角和定理求出x的值,繼而求得∠ODC的度數(shù),由此即可求得答案.
(1)∵AO=OC,BO=OD,
∴四邊形ABCD是平行四邊形,
又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,
∴∠AOB=∠OAD+∠ADO.
∴∠OAD=∠ADO.
∴AO=OD.
又∵AC=AO+OC=2AO,BD=BO+OD=2OD,
∴AC=BD.
∴四邊形ABCD是矩形.
(2)設(shè)∠AOB=4x,∠ODC=3x,則∠ODC=∠OCD=3x,
在△ODC中,∠DOC+∠OCD+∠CDO=180°
∴4x+3x+3x=180°,解得x=18°,
∴∠ODC=3×18°=54°,
∵四邊形ABCD是矩形,
∴∠ADC=90°,
∴∠ADO=∠ADC-∠ODC=90°-54°=36°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將寬為3cm、長為ncm的長方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長是正整數(shù)且個(gè)數(shù)最少.例如,當(dāng)n=5cm時(shí),此長方形可分割成如右圖的4個(gè)小正方形.
請回答下列問題:
(1)n=16時(shí),可分割成幾個(gè)小正方形?
(2)當(dāng)長方形被分割成20個(gè)小正方形時(shí),求n所有可能的值;
(3)一般地,n>3時(shí),此長方形可分割成多少個(gè)小正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AB為直徑作半圓.點(diǎn)D在弧上(不與A,C重合),點(diǎn)E在AB上,且點(diǎn)D.E關(guān)于AC對稱. 給出下列結(jié)論:①若∠ACE=20°,則∠BAC=25°;②若BC=3,AC=4,則;給出下列判斷,正確的是( )
A.①②都對B.①②都錯(cuò)C.①對②錯(cuò)D.①錯(cuò)②對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱這個(gè)分式為“和諧分式”.如: ,則是“和諧分式”.
(1)下列分式中,屬于“和諧分式”的是_____(填序號(hào));
①;②;③;④;
(2)將“和諧分式”化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:=_______(要寫出變形過程);
(3)應(yīng)用:先化簡,并求x取什么整數(shù)時(shí),該式的值為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=經(jīng)過ABCD的頂點(diǎn)B,D,點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)A在y軸上,且AD∥x軸,SABCD=6.
(1)填空:點(diǎn)A的坐標(biāo)為 ,k= ;
(2)求AB所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)證明:無論m取何值,函數(shù)圖象與x軸都有兩個(gè)不相同的交點(diǎn);
(2)當(dāng)圖象的對稱軸為直線x=3時(shí),求它與x軸兩交點(diǎn)及頂點(diǎn)所構(gòu)成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若拋物線與拋物線的開口大小相同,方向相反,且拋物線經(jīng)過的頂點(diǎn),我們稱拋物線為的“友好拋物線”.
(1)若的表達(dá)式為,求的“友好拋物線”的表達(dá)式;
(2)已知拋物線為的“友好拋物線”.求證:拋物線也是的“友好拋物線”;
(3)平面上有點(diǎn),,拋物線為的“友好拋物線”,且拋物線的頂點(diǎn)在第一象限,縱坐標(biāo)為2,當(dāng)拋物線與線段沒有公共點(diǎn)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列表格是某學(xué)校女子排球隊(duì)隊(duì)員年齡統(tǒng)計(jì)表:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù)(人) | 1 | 2 | 4 | 5 |
(1)該排球隊(duì)隊(duì)員年齡的眾數(shù)是 歲;
(2)事件“從該排球隊(duì)隨機(jī)選擇一名隊(duì)員,其年齡為13歲”發(fā)生的概率為 ;
(3)教練決定從年齡為13歲和14歲的A、B、C三名隊(duì)員中,隨機(jī)選取兩名隊(duì)員進(jìn)行“接發(fā)球”訓(xùn)練,求隊(duì)員A、B同時(shí)被選中的概率.(樹狀圖或列表法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com