【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9

(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長

【答案】
(1)

解:∵CD切半圓于點(diǎn)D,OD為⊙O的半徑,

∴CD⊥OD,

∴∠CDO=90°,

∵BE⊥CD于點(diǎn)E,

∴∠E=90°.

∵∠CDO=∠E=90°,∠C=∠C,

∴△COD∽△CBE.


(2)

解:∵在Rt△BEC中,CE=12,BE=9,

∴CE=15,

∵△COD∽△CBE,

,

,

∴r=.


【解析】(1)根據(jù)CD切半圓于點(diǎn)D,BE⊥CD于點(diǎn)E,得出∠CDO=∠E=90°,根據(jù)三角形兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似得出△COD∽△CBE.
(2)根據(jù)(1)中△COD∽△CBE,得出 , 從而求出半徑。
【考點(diǎn)精析】利用切線的性質(zhì)定理和相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績被分別繪制成如下兩個(gè)統(tǒng)計(jì)圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(環(huán))

中位數(shù)(環(huán))

眾數(shù)(環(huán))

方差

a

7

7

1.2

7

b

8

4.2

(1)則表格中a,b的值分別是a=________,b=________;

(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB是某天然氣公司的主輸氣管道,點(diǎn)C、D是在AB異側(cè)的兩個(gè)小區(qū),現(xiàn)在主輸氣管道上尋找支管道連接點(diǎn),向兩個(gè)小區(qū)鋪設(shè)管道。有以下兩個(gè)方案:

方案一:只取一個(gè)連接點(diǎn)P,使得像兩個(gè)小區(qū)鋪設(shè)的支管道總長度最短,在圖中標(biāo)出點(diǎn)P的位置,保留畫圖痕跡;

方案二:取兩個(gè)連接點(diǎn)MN,使得點(diǎn)MC小區(qū)鋪設(shè)的支管道最短,使得點(diǎn)ND小區(qū)鋪設(shè)的管道最短. 在途中標(biāo)出M、N的位置,保留畫圖痕跡;

設(shè)方案一中鋪設(shè)的支管道總長度為L1,方案二中鋪設(shè)的支管道總長度為L2,則L1L2的大小關(guān)系為:L1_______L2(填“>”、“<”“=”)理由是____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)bC點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= b= ,c=

(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

(3) 點(diǎn)AB,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

(4) 請(qǐng)問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線 上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,拋物線 軸交于A,B兩點(diǎn),點(diǎn)P在拋物線上(點(diǎn)P與A,B兩點(diǎn)不重合),如果△ABP的三邊滿足 ,則稱點(diǎn)P為拋物線 的勾股點(diǎn)。

(1)直接寫出拋物線 的勾股點(diǎn)的坐標(biāo);
(2)如圖2,已知拋物線C: 軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線C的勾股點(diǎn),求拋物線C的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)Q在拋物線C上,求滿足條件 的點(diǎn)Q(異于點(diǎn)P)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC,連結(jié)OB,D為OB的中點(diǎn)。點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF。已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒。

(1)如圖1,當(dāng)t=3時(shí),求DF的長;
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值;
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分面積之比為1:2時(shí),求相應(yīng)t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,BAD=60°

(1)如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DECE,若AB=4,求線段EC的長;

(2)如圖2,M為線段AC上一點(diǎn)(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,連接NC、DM,Q為線段NC的中點(diǎn),連接DQ、MQ,判斷DMDQ的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

(1)十一期間,小明等同學(xué)隨家長共15人到游樂園游玩,成人門票每張50元,學(xué)生門票是6折優(yōu)惠.他們購票共花了650元,求一共去了幾個(gè)家長、幾個(gè)學(xué)生?

(2)甲、乙兩人騎自行車同時(shí)從相距65千米的兩地出發(fā)相向而行,甲的速度是每小時(shí)17.5千米,乙的速度是每小時(shí)15千米,求經(jīng)過幾小時(shí)甲、乙兩人相距32.5千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案