已知拋物線y=-x21的頂點(diǎn)為P,點(diǎn)A是第一象限內(nèi)該二次函數(shù)圖像上一點(diǎn),過點(diǎn)Ax軸的平行線交二次函數(shù)圖像于點(diǎn)B,分別過點(diǎn)BAx軸的垂線,垂足分別為C、D,連結(jié)PA、PD,PDAB于點(diǎn)E,△PAD△PEA相似嗎?

A.始終不相似???????? ? B.始終相似

C.只有AB=AD時(shí)相似?? ? D.無法確定

 

【答案】

B.

【解析】

試題分析:設(shè)Ax-x2+1根據(jù)題意可求出PA、PD、PE的值,從而得出,又∠APE=DPA,因此,△PAD∽△PEA.

故選B.

考點(diǎn): 二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.

1.求b+c的值

2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆廣東省深圳市華富中學(xué)初三上學(xué)期期中數(shù)學(xué)卷 題型:解答題

已知拋物線y=-x2mxm+2.  
(Ⅰ)若拋物線與x軸的兩個(gè)交點(diǎn)A、B分別在原點(diǎn)的兩側(cè),并且AB,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點(diǎn),若拋物線上存在關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)M、N,并且 △MNC的面積等于27,試求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年度濰坊市高密七年級(jí)第二學(xué)期期末考試數(shù)學(xué) 題型:解答題

(11·兵團(tuán)維吾爾)(8分)已知拋物線y=-x2+4x-3與x軸交于A、B兩點(diǎn)(A
點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中,用列表描點(diǎn)法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時(shí),函
數(shù)值大于零;
(3)將此拋物線的圖象向下平移一個(gè)單位,請(qǐng)寫出平稱后圖象的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建尤溪初中畢業(yè)學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.

1.求b+c的值

2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州市區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

(本題滿分5分)已知拋物線y=-x2bx+c,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0),求此拋物線的解析式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案