如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線(xiàn)AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線(xiàn)段AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=的值,若不存在,說(shuō)明理由.

【答案】分析:(1)連接BO1,DO2,O2A作O1N⊥O2A于N,連接OA,根據(jù)切線(xiàn)長(zhǎng)定理求出AB的長(zhǎng),設(shè)O1B為r,根據(jù)勾股定理得到方程(4r)2-(2r)2=42,求出方程的解即可;
(2)求出∠CMO=∠NO1O2=30°,求出OM,設(shè)AB的解析式是y=kx+b,把C、M的坐標(biāo)代入得到方程組,求出方程組的解即可;
(3)①∠MO2P=30°,過(guò)B作BQ⊥OM于Q,求出MQ,BQ,過(guò)P'作P'W⊥X軸于W,根據(jù)相似三角形的性質(zhì)求出PW即可得到P的坐標(biāo),根據(jù)相似三角形的性質(zhì)求出k即可;②∠MO2P=120°,過(guò)P作PZ⊥X軸于Z,根據(jù)含30度角的直角三角形性質(zhì)求出PZ,即可得到P的坐標(biāo),根據(jù)相似三角形的性質(zhì)求出k即可.
解答:解:(1)連接BO1,O2A作O1N⊥O2A于N,連接OA,
∵直線(xiàn)AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),
∴CA=CB,CA=CO(切線(xiàn)長(zhǎng)定理),
∴CA=CB=CO,
∴AB=2OC=4,
設(shè)O1B為r,由O1O22-O2N2=O1N2得(4r)2-(2r)2=42,
解得,3r=2
答:⊙O2的半徑的長(zhǎng)為

(2)∵O2N=3r-r=2r,O1O2=r+3r=4r,
∴∠NO1O2=30°,
∴∠CMO=∠NO1O2=30°,
∵OM==2,
M(-2,0),
設(shè)線(xiàn)段AB的解析式是y=kx+b,
把C、M的坐標(biāo)代入得:
解得:k=,b=2,
∴線(xiàn)段AB的解析式為y=x+2(-≤x≤);

(3)△MOB是頂角為120°的等腰三角形,其底邊的長(zhǎng)為2
假設(shè)滿(mǎn)足條件的點(diǎn)P存在,
①∠MO2P=30°,
過(guò)B作BQ⊥OM于Q,
∵OB=MB,
∴MQ=OQ=,
∵∠BMO=30°,
∴BQ=1,BM=2,
過(guò)P'作P'W⊥X軸于W,
∴P'W∥BQ,
==,
∴P'W=2,
即P'與C重合,
P'(0,2),
∴k==4;
②∠MO2P=120°,
過(guò)P作PZ⊥X軸于Z,
PO2=O2M=4,∠PO2Z=60°,
∴O2Z=2,
由勾股定理得:PZ=6,
∴P(4,6),
∴k==12,
答在直線(xiàn)AB上存在點(diǎn)P,使△MO2P與△MOB相似,點(diǎn)P的坐標(biāo)是(0,2)或(4,6),k的值是4或12.
點(diǎn)評(píng):本題主要考查對(duì)相似三角形的性質(zhì)和判定,等腰三角形的性質(zhì),含30度角的直角三角形,勾股定理,銳角三角函數(shù)的定義,解一元一次方程等知識(shí)點(diǎn)的連接和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓O1與圓O2相交于A,B兩點(diǎn),直線(xiàn)O1A交圓O1于C,交圓O2于D,連接CB精英家教網(wǎng)并延長(zhǎng)交圓O2于E,AF切圓O1于A,交CE于F.
(1)求證:
CA
CD
=
AF
DE
;
(2)若
CA
AD
=
3
2
,圓O1的半徑為2,且∠C=30°,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點(diǎn),O2在⊙O1上,AC是⊙O2的直徑,直線(xiàn)CB交⊙O1于D,E為AB延長(zhǎng)線(xiàn)上一點(diǎn),連接DE.
(1)請(qǐng)你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線(xiàn)AB精英家教網(wǎng)切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線(xiàn)段AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=
S△MO2P
S
 
△MOB
的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線(xiàn)O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線(xiàn)AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線(xiàn)交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線(xiàn)段AB的解析式;
(3)在直線(xiàn)AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=數(shù)學(xué)公式的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案