(2003•海南)如圖,AB是半圓⊙O的直徑,半徑OC⊥AB,⊙O的直徑是OC,AD切⊙O1于D,交OC的延長線于E,設(shè)⊙O1的半徑為r,那么用含r的代數(shù)式表示DE,結(jié)果是DE=   
【答案】分析:連接O1D,得∠O1DE=90°,是運(yùn)用切線性質(zhì)常用的作輔助線方法,構(gòu)造三角形相似,得出相似比,結(jié)合直角三角形的勾股定理解題.
解答:解:連接O1D,可得到∠O1DE=∠AOE=90°,∠E=∠E,
∴△O1DE∽△AOE,
則DE:OE=O1D:OA=1:2;
設(shè)DE=x,則OE=2x,O1E=2x-r,
由O1E2-O1D2=DE2,得(2x-r)2-r2=x2,
解得x=0(舍去)或x=r,即DE=r.
點(diǎn)評(píng):解決本題的關(guān)鍵是利用相似求出所求線段所在的直角三角形中其他線段的長度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2003•海南)如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=kx+4的圖象相交于P、Q兩點(diǎn),并且P點(diǎn)的縱坐標(biāo)是6.
(1)求這個(gè)一次函數(shù)的解析式;(2)求△POQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年海南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•海南)如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=kx+4的圖象相交于P、Q兩點(diǎn),并且P點(diǎn)的縱坐標(biāo)是6.
(1)求這個(gè)一次函數(shù)的解析式;(2)求△POQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:填空題

(2003•海南)如圖,在菱形ABCD中,AE⊥BC于E,已知EC=1,cosB=,則這個(gè)菱形的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年海南省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•海南)如圖,AB為半圓O的直徑,C為半圓上一點(diǎn),且為半圓的.設(shè)扇形AOC、△COB、弓形BmC的面積分別為S1、S2、S3,則下列結(jié)論正確的是( )

A.S1<S2<S3
B.S2<S1<S3
C.S2<S3<S1
D.S3<S2<S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年海南省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•海南)如圖是某報(bào)紙公布的我國“九五”期間國內(nèi)生產(chǎn)總值的統(tǒng)計(jì)圖.那么“九五”期間我國國內(nèi)生產(chǎn)總值平均每年比上一年增長( )

A.0.575萬億元
B.0.46萬億元
C.9.725萬億元
D.7.78萬億元

查看答案和解析>>

同步練習(xí)冊(cè)答案