(2003•資陽)如圖,已知四邊形ABCD是梯形(標注的數(shù)字為邊長),按圖中所示的規(guī)律,用2003個這樣的梯形鑲嵌而成的四邊形的周長是   
【答案】分析:要求四邊形的周長,就要先求出梯形的上底和下底,即從圖中所示的規(guī)律可知梯形的上底和下底.
解答:解:用2003個這樣的梯形鑲嵌而成的四邊形為一個梯形,兩腰為1,上底為1001×3+1=3004.下底為1001×3+2=3005;
故其周長為3005+3004+2=6011.
答案6011.
點評:本題是一道找規(guī)律的題目,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•資陽)如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對邊的長.
(1)求證:拋物線C與x軸必有兩個交點;
(2)設P、Q是拋物線C與x軸的兩個交點,求證:P、Q兩點總在x軸的正半軸上;
(3)設直線l:y=ax-bc與拋物線交于點E、F,與y軸交于點M,N為拋物線與y軸的交點,直線x=a是拋物線的對稱軸,當△MNE的面積是△MNF的面積的5倍時,確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年四川省資陽市中考數(shù)學試卷(解析版) 題型:解答題

(2003•資陽)如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對邊的長.
(1)求證:拋物線C與x軸必有兩個交點;
(2)設P、Q是拋物線C與x軸的兩個交點,求證:P、Q兩點總在x軸的正半軸上;
(3)設直線l:y=ax-bc與拋物線交于點E、F,與y軸交于點M,N為拋物線與y軸的交點,直線x=a是拋物線的對稱軸,當△MNE的面積是△MNF的面積的5倍時,確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2003•資陽)如圖,△ABC的中位線EF交中線AD于G,則△AGE與△ABC的面積之比為   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2003•資陽)如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年四川省資陽市中考數(shù)學試卷(解析版) 題型:解答題

(2003•資陽)如圖,在△ABC中,已知∠ACB=90°,CD⊥AB于D,AC=,BD=3.
(1)請根據(jù)下面求cosA的解答過程,在橫線上填上適當?shù)慕Y論,使解答正確完整,
∵CD⊥AB,∠ACB=90°∴AC=______cosA,______=AC•cosA
由已知AC=6,BD=3,∴=AB cosA=(AD+BD)cosA=(cosA+3)cosA,設t=cosA,則t>0,且上式可化為t2+______

查看答案和解析>>

同步練習冊答案