【題目】在平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為交于點(diǎn)

1)如圖(1),雙曲線過點(diǎn),直接寫出點(diǎn)的坐標(biāo)和雙曲線的解析式;

2)如圖(2),雙曲線分別交于點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)軸上.求證,并求點(diǎn)的坐標(biāo);

3)如圖(3),將矩形向右平移個(gè)單位長度,使過點(diǎn)的雙曲線交于點(diǎn).當(dāng)為等腰三角形時(shí),求的值.

【答案】1, ;(2)證明見解析,;(3)滿足條件的的值為312

【解析】

(1)利用中點(diǎn)坐標(biāo)公式求出點(diǎn)E坐標(biāo)即可.

(2)由點(diǎn)M,N在反比例函數(shù)的圖象上,推出DNAD=BMAB,因?yàn)锽C=AD,AB=CD,推出DNBC=BMCD,推出,可得MN∥BD,由此即可解決問題.

(3)分兩種情形:①當(dāng)AP=AE時(shí).②當(dāng)EP=AE時(shí),分別構(gòu)建方程求解即可.

解:(1)如圖1中,

∵四邊形是矩形,

,

,

∵雙曲線過點(diǎn),

∴反比例函數(shù)的解析式為

2)如圖2中,

∵點(diǎn)在反比例函數(shù)的圖象上,

,

,

,

,

,

∴直線的解析式為,

關(guān)于對(duì)稱,

,

∴直線的解析式為

3)如圖3中,

①當(dāng)時(shí),∵,在反比例函數(shù)圖象上,

②當(dāng)時(shí),點(diǎn)與點(diǎn)重合,∵,在反比例函數(shù)圖象上,

綜上所述,滿足條件的的值為312

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識(shí).隨機(jī)抽取8名學(xué)生,對(duì)他們的垃圾分類投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,統(tǒng)計(jì)情況如下表.

學(xué)生

垃圾類別

廚余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求8名學(xué)生中至少有三類垃圾投放正確的概率;

2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里有害垃圾投放錯(cuò)誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?

(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(diǎn)(-1,2)(10),且與軸相交于負(fù)半軸,下列結(jié)論:①;②方程的兩根一個(gè)大于1,另一個(gè)小于-1;③;④.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形紙片OABC放置在直角坐標(biāo)系中,點(diǎn)A(3,0),點(diǎn)C(0).

(I).如圖,經(jīng)過點(diǎn)OB折疊紙片,得折痕OB,點(diǎn)A的對(duì)應(yīng)點(diǎn)為,的度數(shù);

()如圖,點(diǎn)MN分別為邊OA、BC上的動(dòng)點(diǎn),經(jīng)過點(diǎn)M、N折疊紙片,得折痕MN,點(diǎn)B的對(duì)應(yīng)點(diǎn)為

①當(dāng)點(diǎn)B的坐標(biāo)為(-1,0)時(shí),請(qǐng)你判斷四邊形的形狀,并求出它的周長;

②若點(diǎn)N與點(diǎn)C重合,當(dāng)點(diǎn)落在坐標(biāo)軸上時(shí),直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國第二屆青年運(yùn)動(dòng)會(huì)(簡稱二青會(huì))將于20198月在山西舉行,太原市作為主賽區(qū),將承擔(dān)多項(xiàng)賽事,現(xiàn)正從某高校的甲、乙兩班分別招募10人作為頒獎(jiǎng)禮儀志愿者,同學(xué)們踴躍報(bào)名,甲、乙兩班各報(bào)了20人,現(xiàn)已對(duì)他們進(jìn)行了基本素質(zhì)測評(píng),滿分10.各班按測評(píng)成績從高分到低分順序各錄用10人,對(duì)這次基本素質(zhì)測評(píng)中甲、乙兩班學(xué)生的成績繪制了如圖所示的統(tǒng)計(jì)圖.

請(qǐng)解答下列問題:

(1)甲班的小華和乙班的小麗基本素質(zhì)測評(píng)成績都為7分,請(qǐng)你分別判斷小華,小麗能否被錄用(只寫判斷結(jié)果,不必寫理由).

(2)請(qǐng)你對(duì)甲、乙兩班各被錄用的10名志愿者的成績作出評(píng)價(jià)(眾數(shù),中位數(shù),或平均數(shù)中的一個(gè)方面評(píng)價(jià)即可).

(3)甲、乙兩班被錄用的每一位志愿者都將通過抽取卡片的方式?jīng)Q定去以下四個(gè)場館中的兩個(gè)場館進(jìn)行頒獎(jiǎng)禮儀服務(wù),四個(gè)場館分別為:太原學(xué)院足球場,太原市沙灘排球場,山西省射擊射箭訓(xùn)練基地,太原水上運(yùn)動(dòng)中心,這四個(gè)場館分別用字母AB,CD的四張卡片(除字母外,其余都相同)背面朝上,洗勻放好.志愿者小玲從中隨機(jī)抽取一張(不放回),再從中隨機(jī)抽取一張,請(qǐng)你用列表或畫樹狀圖的方法求小玲抽到的兩張卡片恰好是“A”“B”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<120°)得到,BC,AC分別交于點(diǎn)D,E.設(shè),的面積為,則的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長120米,下底長180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.

(1)用含x的式子表示橫向甬道的面積;

(2)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過6米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用為239萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今很多初中生喜歡購頭飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A.白開水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題

1)這個(gè)班級(jí)有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價(jià)格如下表),則該班同學(xué)每天用于飲品的人均花費(fèi)是多少元?

飲品名稱

白開水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價(jià)格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開水的5名班委干部(其中有兩位班長記為A,B,其余三位記為C,D,E)中隨機(jī)抽取2名班委干部作良好習(xí)慣監(jiān)督員,請(qǐng)用列表法或畫樹狀圖的方法求出恰好抽到2名班長的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案