如圖,點B、F、C、E在同一直線上,BF=CE,AB∥ED,AC∥FD.求證:AB=DE.

【答案】分析:由于BF=CE,利用等式性質(zhì)可證BC=EF,而AB∥ED,AC∥FD,利用平行線的性質(zhì)可得∠B=∠E,∠ACB=∠DFE,從而利用ASA可證△ABC≌△DEF,進而可得AB=DE.
解答:證明:∵BF=CE,
∴BF+CF=CE+CF,
即BC=EF,
∵AB∥ED,
∴∠B=∠E,
∵AC∥FD,
∴∠ACB=∠DFE,
在△ABC和△DEF中,

∴△ABC≌△DEF,
∴AB=DE.
點評:本題考查了全等三角形的判定和性質(zhì),解題的關(guān)鍵是注意先證明ASA所需要的三個條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在數(shù)軸上,它們所對應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點A、B關(guān)于原點O對稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A為⊙O直徑CB延長線上一點,過點A作⊙O的切線AD,切點為D,過點D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長.
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A的坐標(biāo)為(2
2
,0
),點B在直線y=-x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為( 。
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點O到直線l的距離為3,如果以點O為圓心的圓上只有兩點到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊答案