計算:如圖,兩個矩形的一部分重疊在一起,重疊部分是邊長為2的正方形,求空白部分的面積是多少?

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為
89
10
a
的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是
 
,給出證明,并通過計算說明此時鐵片都能穿過圓孔;
(2)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片;
①當BE=DF=
1
5
a
時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,矩形鐵片ABCD中,AD=8,AB=4; 為了要讓鐵片能穿過直徑為3.8的圓孔,需對鐵片進行處理 (規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔).
(1)直接寫出矩形鐵片ABCD的面積
32
32
;
(2)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,將矩形鐵片的四個角去掉.
①證明四邊形MNPQ是菱形;
②請你通過計算說明四邊形鐵片MNPQ能穿過圓孔.
(3)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片.當BE=DF=1時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一張寫有密碼的紙片被隨意埋在如圖所示的矩形區(qū)域內(nèi)(每個方格大小一樣).
(1)埋在哪個區(qū)域的可能性較大?
(2)分別計算埋在三個區(qū)域內(nèi)的概率;
(3)埋在哪兩個區(qū)域的概率相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

已知正方形的邊長為1,如圖①,可以計算出正方形的對角線長為;如圖②,兩個并排的矩形的對角線的長為______;如圖③,三個并排的矩形的對角線的長為______;如圖④,猜想n個并排的矩形的對角線長為______.

查看答案和解析>>

同步練習(xí)冊答案