如圖,長方形ABCD中,E為BC中點,作∠AEC的角平分線交AD于F點.若AB=6,AD=16,則FD的長度為何?( )

A.4
B.5
C.6
D.8
【答案】分析:首先由矩形ABCD的性質(zhì),得BC=AD=16,已知E為BC中點,則BE=BC÷2=8,根據(jù)勾股定理在直角三角形ABE中可求出AE,再由∠AEC的角平分線交AD于F點,得∠AEF=∠CEF,已知矩形ABCD,AD∥BC,
則∠AFE=∠CEF,所以∠AEF=∠AFE,所以AF=AE,從而求出FD.
解答:解:已知矩形ABCD,∴BC=AD=16,
又E為BC中點,
∴BE=•BC=×16=8,
在直角三角形ABE中,
AE2=AB2+BE2=62+82=100,
∴AE=10,
已知矩形ABCD,
∴AD∥BC,
∴∠AFE=∠CEF,
又∠AEC的角平分線交AD于F點,
∴∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AF=AE=10,
∴FD=AD-AF=16-10=6,
故選:C.
點評:此題考查的知識點是矩形的性質(zhì)、角平分線的性質(zhì)及勾股定理,解題的關(guān)鍵是由勾股定理求出AE,然后由已知推出AE=AF.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(15屆江蘇初二1試)已知:如圖,長方形ABCD被兩條線段分割成四個小長方形,如果其中圖形Ⅰ、Ⅱ、Ⅲ的面積依次為8、6、5,則陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,長方形ABCD沿著AE折疊,使D點落在BC邊上的F點處,如果∠BAF=50°,則∠EAF的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖:長方形ABCD中,AB=3,BC=4,將△BCD沿BD翻折,點C落在點F處.
(1)說明:△BED為等腰三角形;
(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,長方形ABCD中,AB=3,BC=4,若將該矩形折疊,使點C與點A重合,則折痕EF的長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,長方形ABCD中放置9個形狀、大小都相同的小長方形,小長方形的長為x,寬為y(尺寸如圖)
(1)寫出兩個關(guān)于x,y的關(guān)系式.
(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案