22、如圖,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分線EF交AD于G,交BA的延長線于F,且∠D=45°,求BF的長度.
分析:此題要能夠根據(jù)線段的垂直平分線的性質(zhì)發(fā)現(xiàn)等腰直角三角形CGD,進一步發(fā)現(xiàn)直角三角形AGF,則AF=AG,再根據(jù)矩形的性質(zhì)發(fā)現(xiàn)AB=CG,從而證明要求的BF的長即AD的長即可.
解答:解:∵EF垂直平分CD
∴CG=DG
∵∠D=45°
∴∠GCD=45°
∴∠CGD=90°
則四邊形ABCG是矩形
所以AB=CG=DG
∵∠AGF=∠EGD=45°
∴AF=AG
∴BF=AG+GD=AD=6.
點評:此題主要是能夠發(fā)現(xiàn)等腰直角三角形和矩形,根據(jù)特殊圖形的性質(zhì)進行分析和證明.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

27、如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對角線OC、AB交于點D,點E、F、G分別是CD、BD、BC的中點,以O為原點,直線OB為x軸建立平面直角坐標系,則G、E、D、F四個點中與點A在同一反比例函數(shù)圖象上的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分別是邊AB、CD上的動點(點P不與點A、點B重合),且有BP=2CQ.
(1)求AB的長;
(2)設CQ=x,四邊形PADQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以C為圓心、CQ為半徑作⊙C,以P為圓心、以PA的長為半徑作⊙P.當四邊形PADQ是平行四邊形時,試判斷⊙C與⊙P的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一點P,使△ABP∽△DCP,求出BP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對角線OC、AB交于點D,點E、F、G分別是CD、BD、BC的中點,以O為原點,直線OB為x軸建立平面直角坐標系,則G、E、D、F四個點中與點A在同一反比例函數(shù)圖象上的是點
(18,6)
(18,6)

查看答案和解析>>

同步練習冊答案