【題目】如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個正多邊形是________邊形.

【答案】

【解析】

首先根據(jù)圓周角定理得出∠POQ=80°,進而利用等腰三角形的性質(zhì)得出∠OPQ=OQP,再由外角的性質(zhì)得出∠A+APO=POM=10°+50°=60°,即可得出POM是等邊三角形,再由正六邊形的性質(zhì)得出答案.

連接QO,PO,

QO=PO,

∴∠OPQ=OQP,

∵∠PMQ=40°,

∴∠POQ=80°,

∴∠OPQ+OQP=180°-80°=100°,

∴∠OPQ=OQP=50°,

∴∠A+APO=POM=10°+50°=60°

PO=OM,

∴△POM是等邊三角形,

PM=OP=OM,

∴以PM為邊作圓的內(nèi)接正多邊形,則這個正多邊形是正六邊形.

故答案為:6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

現(xiàn)有甲、乙兩種機器加工零件,甲種機器比乙種機器每小時多加工30個,甲種機器加工900個零件所用時間與乙種機器加工600個零件所用時間相等,求兩種機器每小時各加工多少個零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點O,點M、點N分別是線段AD、BE的中點.

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點O. AE與DC交于點M,BD與AC交于點N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖②中四對全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在邊長為2的正三角形ABC中,EF、G分別為AB

AC、BC的中點,點P為線段EF上一個動點,連接BPGP,則△BPG的周長的最小值是

_ ▲

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過點C,ADEF于點D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,拋物線y=ax2+4x+cy軸交于點A05),x軸交于點E,B,B坐標為(5,0).

1)求二次函數(shù)解析式及頂點坐標;

2)過點AAC平行于x,交拋物線于點CP為拋物線上的一點(點PAC上方),PD平行于y軸交AB于點D問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州漆器名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.

(1)求之間的函數(shù)關系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線經(jīng)過點,與雙曲線在第二象限內(nèi)交于點,且的面積為

求直線的解析式及的值;

試探究:在軸上是否存在點,使為直角三角形?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案