如圖,以平行四邊形ABCD的頂點A為圓心,AB為半徑作圓交AD,BC于點E,F(xiàn),延長BA交⊙O于G。

求證:
證明見解析.

試題分析:首先在圓中連接AF,即可以將問題轉(zhuǎn)化到三角形,四邊形中根據(jù)平行線的性質(zhì)可得到相應的一組角相等,然后再結(jié)合在同圓中根據(jù)圓心角相等,根據(jù)圓周角定理可知圓心角相等所對的弧相等求得結(jié)論.
試題解析:證明:連接AF,
∵AB=AF,
∴∠ABF=∠AFB.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠DAF=∠AFB,∠GAE=∠ABF.
∴∠GAE=∠EAF.
.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,,,以點C為圓心,為半徑的圓交AB于點D,交AC于點E,則的度數(shù)為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為O的直徑,射線AP交O于C點,∠PCO的平分線交O于D點,過點D作交AP于E點.

(1)求證:DE為O的切線;
(2)若,,求直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為
A.3B.C.4D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知扇形的圓心角為30°,面積為2,則扇形的弧長是          ㎝.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,P是經(jīng)過O(0,0)、A(0,2)、B(2,0)的圓上的一個動點(P與A、B不重合),則∠OPB=(       )

A.45 º            B.135 º         C.45 º或135 º       D.無法判斷

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△PQR是⊙O的內(nèi)接正三角形,四邊形ABCD是⊙O的內(nèi)接正方形,BC∥QR,則∠AOQ的度數(shù)為(      )
A.60°B.65°C.72°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知圓錐的母線長為5,底面半徑為3,則它的側(cè)面積是__ __

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于E.則陰影部分面積為(結(jié)果保留π)       

查看答案和解析>>

同步練習冊答案