【題目】如圖,拋物線經(jīng)過(guò)A(﹣10),B3,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),連接BD,點(diǎn)HBD的中點(diǎn).請(qǐng)解答下列問(wèn)題:

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)在y軸上找一點(diǎn)P,使PD+PH的值最小,則PD+PH的最小值為 

【答案】1,D14);(2 PD+PH 最小值

【解析】

1)根據(jù)題意把已知兩點(diǎn)的坐標(biāo)代入,求出bc的值,就可以確定拋物線的解析式,配方或用公式求出頂點(diǎn)坐標(biāo);

2)由題意根據(jù)B、D兩點(diǎn)的坐標(biāo)確定中點(diǎn)H的坐標(biāo),作出H點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)點(diǎn)H′,連接HDy軸交點(diǎn)即為P,求出HD即可.

解:(1)∵拋物線過(guò)點(diǎn)A-1,0),B3,0,

,解得,

∴所求函數(shù)的解析式為:,

化為頂點(diǎn)式為:=-x-12+4,

∴頂點(diǎn)D14;

2)∵B3,0),D1,4,

∴中點(diǎn)H的坐標(biāo)為(2,2)其關(guān)于y軸的對(duì)稱(chēng)點(diǎn)H′坐標(biāo)為(-22,

連接HDy軸交于點(diǎn)P,

PD+PH最小且最小值為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠設(shè)計(jì)了一款成本為20/件的工藝品投放市場(chǎng)進(jìn)行試銷(xiāo),經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):

銷(xiāo)售單價(jià)(元/件)

30

40

50

60

每天銷(xiāo)售量(件)

500

400

300

200

1)研究發(fā)現(xiàn),每天銷(xiāo)售量與單價(jià)滿(mǎn)足一次函數(shù)關(guān)系,求出的關(guān)系式;

2)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷(xiāo)售單價(jià)最高不能超過(guò)45/件,那么銷(xiāo)售單價(jià)定為多少時(shí),工藝廠試銷(xiāo)該工藝品每天獲得的利潤(rùn)8000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】省射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國(guó)比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

10

10

9

8

1)根據(jù)表格中的數(shù)據(jù),可計(jì)算出甲的平均成績(jī)是 環(huán)(直接寫(xiě)出結(jié)果);

2)已知乙的平均成績(jī)是9環(huán),試計(jì)算其第二次測(cè)試成績(jī)的環(huán)數(shù);

3)分別計(jì)算甲、乙六次測(cè)試成績(jī)的方差,根據(jù)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加全國(guó)比賽更合適,請(qǐng)說(shuō)明理由.

(計(jì)算方差的公式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】箱中裝有3張相同的卡片,它們分別寫(xiě)有數(shù)字12,4箱中也裝有3張相同的卡片,它們分別寫(xiě)有數(shù)字24,5;現(xiàn)從箱、箱中各隨機(jī)地取出1張卡片,請(qǐng)你用畫(huà)樹(shù)形(狀)圖或列表的方法求:

1)兩張卡片上的數(shù)字恰好相同的概率.

2)如果取出箱中卡片上的數(shù)字作為十位上的數(shù)字,取出箱中卡片上的數(shù)字作為個(gè)位上的數(shù)字,求兩張卡片組成的兩位數(shù)能被3整除的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(學(xué)習(xí)心得)于彤同學(xué)在學(xué)習(xí)完這一章內(nèi)容后,感覺(jué)到一些幾何問(wèn)題如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.例如:如圖1,在中,,外一點(diǎn),且,的度數(shù).若以點(diǎn)為圓心,為半徑作輔助,則、必在上,的圓心角,而是圓周角,從而可容易得到=________.

2)(問(wèn)題解決)如圖2,在四邊形中,,,的度數(shù).

3)(問(wèn)題拓展)如圖3,是正方形的邊上兩個(gè)動(dòng)點(diǎn),滿(mǎn)足.連接交于點(diǎn),連接于點(diǎn),連接交于點(diǎn),若正方形的邊長(zhǎng)為2,則線段長(zhǎng)度的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.

①如圖2,連接AC,當(dāng)PAB的中點(diǎn)時(shí),判斷ACE的形狀,并說(shuō)明理由;

②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)袋中均裝有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)有的三個(gè)數(shù)值為﹣7,﹣13.乙袋中的三張卡片所標(biāo)的數(shù)值為﹣2,1,6.先從甲袋中隨機(jī)取出一張卡片,用x表示取出的卡片上的數(shù)值,再?gòu)囊掖须S機(jī)取出一張卡片,用y表示取出卡片上的數(shù)值,把x、y分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo).

1)用適當(dāng)?shù)姆椒▽?xiě)出點(diǎn)Ax,y)的所有情況.

2)求點(diǎn)A落在第三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   

2)小明和小穎用轉(zhuǎn)盤(pán)做游戲,每人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,若兩次指針?biāo)笖?shù)字之和為奇數(shù),則小明勝,否則小穎勝(指針指在分界線時(shí)重轉(zhuǎn)),這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)用樹(shù)狀圖或者列表法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為( 。

A. 31° B. 28° C. 62° D. 56°

查看答案和解析>>

同步練習(xí)冊(cè)答案