【題目】如圖,已知點A(1,-1),B(2,3),點P為x軸上一點,當|PA-PB|的值最大時,點P的坐標為( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
【答案】B
【解析】
由題意作A關(guān)于x軸對稱點C,連接BC并延長,BC的延長線與x軸的交點即為所求的P點;首先利用待定系數(shù)法即可求得直線BC的解析式,繼而求得點P的坐標.
解:作A關(guān)于x軸對稱點C,連接BC并延長交x軸于點P,
∵A(1,-1),
∴C的坐標為(1, 1),
連接BC,設(shè)直線BC的解析式為:y=kx+b,
∴,解得,
∴直線BC的解析式為:y=2x-1,
當y=0時,x=,
∴點P的坐標為:(,0),
∵當B,C,P不共線時,根據(jù)三角形三邊的關(guān)系可得:|PA-PB|=|PC-PB|<BC,
∴此時|PA-PB|=|PC-PB|=BC取得最大值.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是內(nèi)的一點.
(1)如圖,平分交于點,點在線段上(點不與點、重合),且,求證:.
(2)如圖,若是等邊三角形,,,以為邊作等邊,連.當是等腰三角形時,試求出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點C置于直線l上,圖2是由圖1抽象出的幾何圖形,過A、B兩點分別作直線l的垂線,垂足分別為D、E.
(1)△ACD與△CBE全等嗎?說明你的理由.
(2)猜想線段AD、BE、DE之間的關(guān)系.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EF交BC于點D,交AB于點E,且CF=AE
(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.
(特別提醒:表示角最好用數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④APAD=CQCB.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根據(jù)表格中的信息,完成下列各題:
(1)當x=3時,y=________;
(2)當x=_____時,y有最________值為________;
(3)若點A(x1,y1)、B(x2,y2)是該二次函數(shù)圖象上的兩點,且﹣1<x1<0,1<x2<2,試比較兩函數(shù)值的大。y1________y2 ;
(4)若自變量x的取值范圍是0≤x≤5,則函數(shù)值y的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com