如圖,在梯形ABCD中,AD∥BC,E是BC的中點(diǎn),AD=5,BC=12,CD=CE=4
2
,∠C=45°,點(diǎn)P是BC邊上一動(dòng)點(diǎn),設(shè)PB的長(zhǎng)為x.
(1)求梯形ABCD的面積;
(2)當(dāng)x的值為多少時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形;
(3)當(dāng)x的值為多少時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形.
分析:(1)首先分別過A、D作AM⊥BC于M,DN⊥CB于N,易得四邊形AMND是矩形,由CD=CE=4
2
,∠C=45°,可求得DN的長(zhǎng),繼而求得梯形ABCD的面積;
(2)由(1)可得:BM=CB-CN-MN=3,若點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形,則∠APC=90°或∠DEB=90°,那么P與M重合或E與N重合,即可求出此時(shí)的x的值;
(2)若以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形,那么AD=PE,有兩種情況:①當(dāng)P在E的左邊,利用已知條件可以求出BP的長(zhǎng)度;②當(dāng)P在E的右邊,利用已知條件也可求出BP的長(zhǎng)度.
解答:解:(1)如圖,分別過A、D作AM⊥BC于M,DN⊥CB于N,
則四邊形AMND是矩形,
∴AM=DN,AD=MN=5,
而CD=4
2
,∠C=45°,
∴DN=CN=CD•sin∠C=4
2
×
2
2
=4=AM,
∴S梯形ABCD=
1
2
(AD+BC)•DN=
1
2
×(5+12)×4=34;

(2)由(1)可得:BM=CB-CN-MN=3,
若點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形,
則∠APC=90°或∠DEB=90°,
當(dāng)∠APC=90°時(shí),
∴P與M重合,
∴BP=BM=3;
當(dāng)∠DPB=90°時(shí),P與N重合,
∴BP=BN=8;
故當(dāng)x的值為3或8時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形;

(2)若以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形,那么AD=PE,
有兩種情況:①當(dāng)P在E的左邊,
∵E是BC的中點(diǎn),
∴BE=6,
∴BP=BE-PE=6-5=1;
②當(dāng)P在E的右邊,
BP=BE+PE=6+5=11;
故當(dāng)x的值為1或11時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形.
點(diǎn)評(píng):此題考查了梯形的性質(zhì)、平行四邊形的判定與性質(zhì)、直角梯形的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案