(2007•襄陽)如圖,AB是一棵古樹,某校初四(1)班數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)知識測出這棵古樹的高,過程如下:在古樹同側(cè)的水平地面上,分別選取了C、D兩點(diǎn)(C、D兩點(diǎn)與古樹在同一直線上),用測角儀在C處測得古樹頂端A的仰角α=60°,在D處測得古樹頂端A的仰角β=30°,又測得C、D兩點(diǎn)相距14米.已知測角儀高為1.5米,請你根據(jù)他們所測得的數(shù)據(jù)求出古樹AB的高.(精確到0.1米,≈1.732)

【答案】分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及到兩個直角三角形,應(yīng)利用其公共邊構(gòu)造三角關(guān)系,進(jìn)而可求出答案.
解答:解:連接FE并延長交AB于G.  

設(shè)AG=x.
在Rt△AEG中,=tanα.
∴EG=x.
在Rt△AFG中,=tanβ.
∴FG=
x=14. 
∴x=7=7×1.732≈12.1米.  
∴AB=13.6米.
即古樹AB的高約為13.6米.
點(diǎn)評:本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個單位長度的速度運(yùn)動,點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個單位長度的速度運(yùn)動,且動點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時出發(fā),設(shè)運(yùn)動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省大連市第55中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個單位長度的速度運(yùn)動,點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個單位長度的速度運(yùn)動,且動點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時出發(fā),設(shè)運(yùn)動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個單位長度的速度運(yùn)動,點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個單位長度的速度運(yùn)動,且動點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時出發(fā),設(shè)運(yùn)動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省南通市通州區(qū)通西片一模試卷(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個單位長度的速度運(yùn)動,點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個單位長度的速度運(yùn)動,且動點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時出發(fā),設(shè)運(yùn)動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省襄樊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2007•襄陽)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動點(diǎn)P從點(diǎn)A開始沿AB方向以每秒1個單位長度的速度運(yùn)動,點(diǎn)Q從O點(diǎn)開始沿x軸正方向以每秒4個單位長度的速度運(yùn)動,且動點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時出發(fā),設(shè)運(yùn)動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點(diǎn),求經(jīng)過A、P1、Q1三點(diǎn)的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說明理由.

查看答案和解析>>

同步練習(xí)冊答案