【題目】先化簡,再求值:(5x3+2x4y﹣3xy2)+(x3+3xy2+y3)﹣(6x3﹣x2y2+2y3),其中 x=2,y=﹣1.

【答案】﹣27.

【解析】

先去括號、合并同類項得到最簡結(jié)果,再把xy的值代入計算即可求出值

原式=5x3+2x4y﹣3xy2+x3+3xy2+y3﹣6x3+x2y2﹣2y3

=2x4y+x2y2﹣y3

x=2,y=﹣1 時,

原式=2×16×(﹣1)+4×1﹣(﹣1)

=﹣32+4+1

=﹣27.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在 0,1,﹣2.1,﹣1.2 這四個數(shù)中,最小的數(shù)是( )

A. 0 B. ﹣2.1 C. 1 D. ﹣1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一批貨物要運往某地,貨主準備租用汽車運輸公司的甲、乙兩種貨車.已知過去兩次租用這兩種貨車的情況如下表:

第一次

第二次

甲種貨車輛數(shù)(輛)

2

5

乙種貨車輛數(shù)(輛)

3

6

累計運貨噸數(shù)(噸)

15.5

35

現(xiàn)租用該公司3輛甲種貨車及5輛乙種貨車一次剛好運完這批貨,如果按每噸付運費30元計算,問貨主應(yīng)付運費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a<b,則下列不等式變形錯誤的是( )
A.a+1 < b+1
B.<
C.3a-4>3b-4
D.4-3a>4-3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a﹣b>0,則a>b;若a﹣b=0,則a=b;若a﹣b<0,則a<b.這是利用“作差法”比較兩個數(shù)或兩個代數(shù)式值的大。
(1)試比較代數(shù)式5m2﹣4m+2與4m2﹣4m﹣7的值之間的大小關(guān)系;
(2)已知A=5m2﹣4( m﹣ ),B=7(m2﹣m)+3,請你運用前面介紹的方法比較代數(shù)式A與B的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次抽樣調(diào)查中收集了一些數(shù)據(jù),對數(shù)據(jù)進行分組,繪制了頻數(shù)分布表,由于操作失誤,繪制時不慎把第三小組的頻數(shù)弄丟了,現(xiàn)在只知道最后一組(89.5~99.5)出現(xiàn)的百分比為15%,由此可知丟失的第三小組的頻數(shù)是。

分組

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~99.5

頻數(shù)

9

15

16

12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1-1,要在燃氣管道l上修建一個泵站,分別向A,B兩城鎮(zhèn)供氣泵站修在什么地方,可使所用的輸氣管線最短?

(2)如圖1-2,公園內(nèi)兩條小河匯合,兩河形成的半島上有一處古跡P,現(xiàn)計劃在兩條小河上各修建一座小橋(垂直于河岸),并在半島上修三條小路,連通兩座小橋與古跡,這兩座小橋應(yīng)建在何處,使修路的費用最少?

(3)如圖1-3,公園中有兩處古跡P和Q,現(xiàn)計劃在兩條小河上各修建一座小橋(垂直于河岸),并在半島上修四條小路,連通兩座小橋與古跡,這兩座小橋應(yīng)建在何處,才能使修路的費用最少?

(4)如圖1-4,現(xiàn)有一條地鐵線路l,小區(qū)A和小區(qū)B在l的同側(cè),已知地鐵站兩入口C、D間的長度為a米,現(xiàn)設(shè)計兩條路AC、BD連接入口和兩小區(qū)地鐵站入口C、D設(shè)計在何處,能使得修建公路AC與BD的費用和最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】資料顯示,目前入駐天貓的商戶,銷售額中:廣告費占比15%~20% ,物流費占比5%~8%,平臺傭金費占比5%,倉庫配貨費占比5%,人員工工資占比10%.若其它成本占銷售額的50%,則商戶的利潤約為銷售額的( )

A. 2%~10% B. 40%~48% C. 10%~20% D. 12%~20%

查看答案和解析>>

同步練習冊答案