如圖,拋物線與直線相交于O(0,0)和A(3,2)兩點(diǎn),則不等式的解集為          

 

【答案】

【解析】

試題分析:仔細(xì)分析圖象特征,找出拋物線在直線下方的部分對(duì)應(yīng)的x的取值范圍即可.

∵拋物線與直線相交于O(0,0)和A(3,2)兩點(diǎn)

∴不等式的解集為.

考點(diǎn):不等式的圖象解法

點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握?qǐng)D象在下方的部分對(duì)應(yīng)的函數(shù)值較小,圖象在上方的部分對(duì)應(yīng)的函數(shù)值較大.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通二模)如圖,已知直線y=
12
x+2
分別交x軸、y軸于A、B兩點(diǎn),將△OAB繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OCD.拋物線y=ax2+bx+c經(jīng)過(guò)A、C、D三點(diǎn).
(1)求這條拋物線的解析式;
(2)若將該拋物線向下平移m(m>0)個(gè)單位長(zhǎng)度,使得頂點(diǎn)落在△OAB內(nèi)部(不包含△OAB的各條邊)時(shí),求m的取值范圍;
(3)設(shè)直線AB與該拋物線的另一個(gè)交點(diǎn)為Q,若在x軸上方的拋物線上存在相異的兩點(diǎn)P1、P2,使△P1AQ與△P2AQ的面積相等,且等于t,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•相城區(qū)一模)如圖,拋物線y=
1
4
x2+bx+c的頂點(diǎn)為M,對(duì)稱軸是直線x=1,與x軸的交點(diǎn)為A(-3,0)和B.將拋物線y=
1
4
x2+bx+c繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)M1,A1為點(diǎn)M,A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),旋轉(zhuǎn)后的拋物線與y軸相交于C,D兩點(diǎn).
(1)寫出點(diǎn)B的坐標(biāo)及求拋物線y=
1
4
x2+bx+c的解析式;
(2)求證:A,M,A1三點(diǎn)在同一直線上;
(3)設(shè)點(diǎn)P是旋轉(zhuǎn)后拋物線上DM1之間的一動(dòng)點(diǎn),是否存在一點(diǎn)P,使四邊形PM1MD的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及四邊形PM1MD的面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線數(shù)學(xué)公式分別交x軸、y軸于A、B兩點(diǎn),將△OAB繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OCD.拋物線y=ax2+bx+c經(jīng)過(guò)A、C、D三點(diǎn).
(1)求這條拋物線的解析式;
(2)若將該拋物線向下平移m(m>0)個(gè)單位長(zhǎng)度,使得頂點(diǎn)落在△OAB內(nèi)部(不包含△OAB的各條邊)時(shí),求m的取值范圍;
(3)設(shè)直線AB與該拋物線的另一個(gè)交點(diǎn)為Q,若在x軸上方的拋物線上存在相異的兩點(diǎn)P1、P2,使△P1AQ與△P2AQ 的面積相等,且等于t,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省中考數(shù)學(xué)預(yù)測(cè)試卷(八)(解析版) 題型:解答題

如圖,已知直線分別交x軸、y軸于A、B兩點(diǎn),將△OAB繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OCD.拋物線y=ax2+bx+c經(jīng)過(guò)A、C、D三點(diǎn).
(1)求這條拋物線的解析式;
(2)若將該拋物線向下平移m(m>0)個(gè)單位長(zhǎng)度,使得頂點(diǎn)落在△OAB內(nèi)部(不包含△OAB的各條邊)時(shí),求m的取值范圍;
(3)設(shè)直線AB與該拋物線的另一個(gè)交點(diǎn)為Q,若在x軸上方的拋物線上存在相異的兩點(diǎn)P1、P2,使△P1AQ與△P2AQ 的面積相等,且等于t,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省南通市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知直線分別交x軸、y軸于A、B兩點(diǎn),將△OAB繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OCD.拋物線y=ax2+bx+c經(jīng)過(guò)A、C、D三點(diǎn).
(1)求這條拋物線的解析式;
(2)若將該拋物線向下平移m(m>0)個(gè)單位長(zhǎng)度,使得頂點(diǎn)落在△OAB內(nèi)部(不包含△OAB的各條邊)時(shí),求m的取值范圍;
(3)設(shè)直線AB與該拋物線的另一個(gè)交點(diǎn)為Q,若在x軸上方的拋物線上存在相異的兩點(diǎn)P1、P2,使△P1AQ與△P2AQ 的面積相等,且等于t,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案