操作與探索:如圖,在△ABC中,AC=BC=2,∠C=90°,將一塊三角板的直角頂點(diǎn)放在斜邊的中點(diǎn)P處,繞點(diǎn)P旋轉(zhuǎn).設(shè)三角板的直角邊PM交線段CB于E點(diǎn),當(dāng)CE=0,即E點(diǎn)和C點(diǎn)重合時(shí),有PE=PB,△PBE為等腰三角形,此外,當(dāng)CE等于______時(shí),△PBE為等腰三角形.
∵在△ABC中,AC=BC=2,∠C=90°,
∴AB=
AC2+BC2
=2
2
,
又∵P點(diǎn)為AB的中點(diǎn),
∴PB=
2
,
①若PE=PB,連接PC,∵PB=PC,∴C、E兩點(diǎn)重合,此時(shí)CE=0;
②若PB=BE,則CE=BC-BE=2-
2
;
③若PE=BE,此時(shí)PE⊥BE,
∵P點(diǎn)為AB的中點(diǎn),∴E點(diǎn)為BC的中點(diǎn),
即CE=
1
2
BC=1.
故答案為:1或2-
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)A的坐標(biāo)為(a,b),O為坐標(biāo)原點(diǎn),連接OA,將線段OA繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得OA1,則點(diǎn)A1的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知扇形OAB的圓心角為60°,半徑為1,將它沿著箭頭所示方向無滑動(dòng)滾動(dòng)到O′A′B′位置時(shí),求點(diǎn)O到O′所經(jīng)過的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

同學(xué)們?cè)孢^萬花筒,它是由三塊等寬等長(zhǎng)的玻璃片圍成的.如圖是看到的萬花筒的一個(gè)圖案,圖中所有小三角形均是全等的等邊三角形,其中的菱形AEFG可以看成是把菱形ABCD以A為中心( 。
A.順時(shí)針旋轉(zhuǎn)60°得到B.順時(shí)針旋轉(zhuǎn)120°得到
C.逆時(shí)針旋轉(zhuǎn)60°得到D.逆時(shí)針旋轉(zhuǎn)120°得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,ABCD是一張矩形紙片,點(diǎn)O為矩形對(duì)角線的交點(diǎn).直線MN經(jīng)過點(diǎn)O交AD于M,交BC于N.操作:先沿直線MN剪開,并將直角梯形MNCD繞點(diǎn)O旋轉(zhuǎn)______度后(填入一個(gè)你認(rèn)為正確的序號(hào):①90°;②180°;③270°;④360°),恰與直角梯形NMAB完全重合;再將重合后的直角梯形MNCD以直線MN為軸翻轉(zhuǎn)180°后所得到的圖形是下列中的______.(填寫正確圖形的代號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ACD和△BCE都是等邊三角形,△NCE經(jīng)過順時(shí)針旋轉(zhuǎn)得到△MCB.
(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)了多少度?
(2)如果連接MN,那么,△MNC是什么三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀與理解:
圖1是邊長(zhǎng)分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;

(2)操作:若將圖1中的△C′DE,繞點(diǎn)C按順時(shí)針方向任意旋轉(zhuǎn)一個(gè)角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作過程,請(qǐng)你猜想當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最大是多少?當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最小是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把兩個(gè)三角形按如圖1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=12,DC=14,把△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得△D1CE1,如圖2,這時(shí)AB與CD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F;
(1)求∠ACD1的度數(shù);
(2)求線段AD1的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在一個(gè)10×10的正方形DEFG網(wǎng)格中有一個(gè)△ABC.
①在網(wǎng)格中畫出△ABC向下平移3個(gè)單位得到的△A1B1C1;
②在網(wǎng)格中畫出△ABC繞C點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C;
③若以EF所在的直線為x軸,ED所在的直線為y軸建立直角坐標(biāo)系,寫出A1、A2兩點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案