【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x | 200﹣2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y元
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.
【答案】(1)y=;(2)45天時(shí),最大利潤(rùn)是6050元;(3)41天.
【解析】
(1)根據(jù)單價(jià)乘以數(shù)量,可得利潤(rùn),可得y與x的函數(shù)關(guān)系式;
(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;
(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.
解:(1)當(dāng)1≤x<50時(shí),y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,
當(dāng)50≤x≤90時(shí),
y=(200﹣2x)(90﹣30)=﹣120x+12000,
綜上所述:y=;
(2)當(dāng)1≤x<50時(shí),
y=﹣2x2+180x+2000,
y=﹣2(x﹣45)2+6050.
∵a=﹣2<0,
∴二次函數(shù)開口下,二次函數(shù)對(duì)稱軸為x=45,
當(dāng)x=45時(shí),y最大=6050,
當(dāng)50≤x≤90時(shí),y隨x的增大而減小,
當(dāng)x=50時(shí),y最大=6000,
綜上所述,該商品第45天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是6050元;
(3)①當(dāng)1≤x<50時(shí),y=﹣2x2+180x+2000≥4800,
解得:20≤x<70,
因此利潤(rùn)不低于4800元的天數(shù)是20≤x<50,共30天;
②當(dāng)50≤x≤90時(shí),y=﹣120x+12000≥4800,
解得:x≤60,
因此利潤(rùn)不低于4800元的天數(shù)是50≤x≤60,共11天,
所以該商品在整個(gè)銷售過程中,共41天每天銷售利潤(rùn)不低于4800元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)有九百多名師生外出參加社會(huì)實(shí)踐活動(dòng),準(zhǔn)備租某種客車若干輛.如果每輛車剛好坐滿(即每個(gè)人都剛好有一個(gè)座位),就會(huì)余下14個(gè)人;如果多準(zhǔn)備一輛車,那么每輛車剛好都空1個(gè)座位,則這種客車每輛的乘客座位有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的一個(gè)內(nèi)角∠BAD=80°,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E在AB上,且BE=BO,則∠EOA=___________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本
(1)求每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線分別與x軸、y軸相交與點(diǎn)M、N,邊長(zhǎng)為2的正方形OABC一個(gè)頂點(diǎn)O在坐標(biāo)系的原點(diǎn),直線AN與MC相交與點(diǎn)P,若正方形繞著點(diǎn)O旋轉(zhuǎn)一周,則點(diǎn)P到點(diǎn)(0,2)長(zhǎng)度的最小值是( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊含有角的直角三角板如圖放置,直角頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點(diǎn)恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象過點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得△PAC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及△PAC的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=4,AB=3,經(jīng)過點(diǎn)B和點(diǎn)D的兩個(gè)動(dòng)圓均與AC相切,且與AB、BC、AD、DC分別交于點(diǎn)G、H、E、F,則EF+GH的最小值是( )
A.3B.4C.4.8D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,,是上一點(diǎn),,是邊上一動(dòng)點(diǎn),將四邊形沿直線折疊,的對(duì)應(yīng)點(diǎn).當(dāng)的長(zhǎng)度最小時(shí),則的長(zhǎng)為_______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com