(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線過點(diǎn)、點(diǎn),且與軸的另一交點(diǎn)為,其中>0,又點(diǎn)是拋物線的對(duì)稱軸上一動(dòng)點(diǎn).
(1)求點(diǎn)的坐標(biāo),并在圖1中的上找一點(diǎn),使到點(diǎn)與點(diǎn)的距離之和最小;
(2)若△周長(zhǎng)的最小值為,求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(3)如圖2,在線段上有一動(dòng)點(diǎn)以每秒2個(gè)單位的速度從點(diǎn)向點(diǎn)移動(dòng)(不與端點(diǎn)、重合),過點(diǎn)軸于點(diǎn),設(shè)移動(dòng)的時(shí)間為秒,試把△的面積表示成時(shí)間的函數(shù),當(dāng)為何值時(shí),有最大值,并求出最大值.
見解析解析:
(1)由題意直線AC與x軸的交點(diǎn)為A,
所以當(dāng)y=0,則x=﹣6,
所以點(diǎn)A(﹣6,0).
同理點(diǎn)C(0,8),
由題意,A、B是拋物線y=ax2+bx+8與x軸的交點(diǎn),
∴﹣6,x0是一元二次方程ax2+bx+8=0的兩個(gè)根,
∴﹣6+x0=﹣,﹣6x0=
∴a=﹣,b=﹣+
∵A、B點(diǎn)關(guān)于拋物線對(duì)稱,∴BC所在直線與對(duì)稱軸的交點(diǎn)即為P0
設(shè)直線BC的解析式為y=mx+n,則n=8,mx0+n=0,
∴m=﹣,n=8.
∴BC的解析式為y=﹣x+8.
∴當(dāng)x=﹣=時(shí),y=+4,
∴P0的坐標(biāo)為(,+4);
(2)由(1)可知三角形PAC最小即為AC+BC=10
+=10,
解得x0=10或x0=﹣10(不符舍去),
則點(diǎn)B(10,0),
由點(diǎn)A,B,C三點(diǎn)的二次函數(shù)式為y==﹣(x﹣2)2+
頂點(diǎn)N(2,);
(3)如圖,作MN⊥BC于點(diǎn)N,
則△OBC∽△NCM,
所以=,
即h=
因?yàn)镸H∥BC,
所以
解得MH==,
S=MHh,
=×(8﹣2t)×,
=10t﹣,
因?yàn)槊棵胍苿?dòng)2個(gè)單位,
則當(dāng)t=2時(shí)符合范圍0<t<4,
所以當(dāng)t為2時(shí)S最大為10;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級(jí)第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點(diǎn),根據(jù)圖中信息解答下列問題:

1.(1)寫出A點(diǎn)的坐標(biāo);

2.(2)求反比例函數(shù)的解析式;

3.(3)若點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°后得到點(diǎn)C,請(qǐng)寫出點(diǎn)C的坐標(biāo);并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖(2)。

1.(1)問:始終與△AGC相似的三角形有                ;

2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);

3.(3)問:當(dāng)x為何值時(shí),△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長(zhǎng)AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長(zhǎng)。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實(shí)可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長(zhǎng)?理由是         ,若ED=m,則AB=      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級(jí)第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。

    做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P

    再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小.

做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實(shí)踐運(yùn)用

   如圖,菱形ABCD的兩條對(duì)角線分別長(zhǎng)6和8,點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆湖北省孝感市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案