【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標(biāo)系,一條圓弧經(jīng)過格點(diǎn)、、,若該圓弧所在圓的圓心為點(diǎn),請(qǐng)你利用網(wǎng)格圖回答下列問題:
(1)圓心的坐標(biāo)為_____;
(2)若扇形是一個(gè)圓錐的側(cè)面展開圖,求該圓錐底面圓的半徑長(zhǎng)(結(jié)果保留根號(hào)).
【答案】(1);(2)該圓錐底面圓的半徑長(zhǎng)為.
【解析】
(1)連接、,分別作、的垂直平分線,兩直線交于點(diǎn),則點(diǎn)即為該圓弧所在圓的圓心,進(jìn)而即可求解;
(2)根據(jù)網(wǎng)格結(jié)構(gòu),可得,,根據(jù)勾股定理的逆定理,可得,結(jié)合弧長(zhǎng)公式與圓周長(zhǎng)公式,即可求解.
(1)連接、,分別作、的垂直平分線,兩直線交于點(diǎn),則點(diǎn)即為該圓弧所在圓的圓心,可知點(diǎn)的坐標(biāo)為.
故答案是:;
(2)∵圓的半徑長(zhǎng).
∴,,
,
.
設(shè)圓錐的底面圓的半徑長(zhǎng)為,
∴,
解得:,
答:該圓錐底面圓的半徑長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,則:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的問題中,用一個(gè)字母代表式子中的某一部分,能達(dá)到簡(jiǎn)化計(jì)算的目的,這種思想方法叫做“換元法”,請(qǐng)用“換元法”解決下列問題:
(1)計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬5m的貨船,船艙頂部為長(zhǎng)方形,并高出水面3.6m,求此貨船是否能順利通過拱橋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為坐標(biāo)原點(diǎn),點(diǎn)在軸的正半軸上,四邊形是平行四邊形, ,反比例函數(shù)在第一象限內(nèi)的圖像經(jīng)過點(diǎn),與交于點(diǎn),若點(diǎn)為的中點(diǎn),且的面積為12,則的值為( )
A.16B.24C.36D.48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中, ,邊的長(zhǎng)為邊的長(zhǎng)為,在此三角形內(nèi)有一個(gè)矩形;點(diǎn)分別在上,設(shè)的長(zhǎng)為,矩形的面積為(單位: )
(1)當(dāng)等于30時(shí),求與的函數(shù)關(guān)系式:(不要求寫出自變量的取值范圍)
(2)在(1)的條件下,矩形的面積能否為?請(qǐng)說明理由?
(3)若與的函數(shù)圖象如圖2所示,求此時(shí)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市今年 1 月份的銷售額為 500 萬元,超市預(yù)計(jì)每個(gè)月的銷售額會(huì)逐月增加.預(yù)測(cè) 3 月 份的銷售額比 2 月份增加 120 萬元;
(1)求 2、3 月份平均每月銷售額的增長(zhǎng)率;
(2)按照這樣的增長(zhǎng)速度,超市想在第一季度完成 1800 萬元的銷售目標(biāo)是否能實(shí)現(xiàn)?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,動(dòng)點(diǎn)E、F分別在邊AB、AD上,且AF=AE.將△AEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到△A'EF',設(shè)AE=x,△A'EF'與矩形ABCD重疊部分面積為S,S的最大值為9.
(1)求AD的長(zhǎng);
(2)求S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線y1=2x+4分別與x軸,y軸交于A,B兩點(diǎn),以線段OB為一條邊向右側(cè)作矩形OCDB,且點(diǎn)D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y1=2x+4與直線y2=﹣x+b交于點(diǎn)P.則P的坐標(biāo)為( )
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com