【題目】ABC中,BC=a,AC=b,AB=c,設(shè)c為最長(zhǎng)邊,當(dāng)a2+b2=c2時(shí),ABC是直角三角形;當(dāng)a2+b2≠c2時(shí),利用代數(shù)式a2+b2和c2的大小關(guān)系,探究ABC的形狀(按角分類).

(1)當(dāng)ABC三邊分別為6、8、9時(shí),ABC為   三角形;當(dāng)ABC三邊分別為6、8、11時(shí),ABC為   三角形.

(2)猜想,當(dāng)a2+b2   c2時(shí),ABC為銳角三角形;當(dāng)a2+b2   c2時(shí),ABC為鈍角三角形.

(3)判斷當(dāng)a=2,b=4時(shí),ABC的形狀,并求出對(duì)應(yīng)的c的取值范圍.

【答案】解:(1)銳角;鈍角。

(2)>;<

(3)當(dāng)4≤c<2時(shí),這個(gè)三角形是銳角三角形

當(dāng)c=2時(shí),這個(gè)三角形是直角三角形;

當(dāng)2<c<6時(shí),這個(gè)三角形是鈍角三角形.。

【解析】

試題分析:(1)利用勾股定理列式求出兩直角邊為6、8時(shí)的斜邊的值,然后作出判斷即可

兩直角邊分別為6、8時(shí),斜邊=10,

當(dāng)ABC三邊分別為6、8、9時(shí),ABC為銳角三角形;

當(dāng)ABC三邊分別為6、8、11時(shí),ABC為鈍角三角形。

(2)根據(jù)(1)中的計(jì)算作出判斷即可;

當(dāng)a2+b2>c2時(shí),ABC為銳角三角形;當(dāng)a2+b2<c2時(shí),ABC為鈍角三角形。

(3)根據(jù)三角形的任意兩邊之和大于第三邊求出最長(zhǎng)邊c點(diǎn)的最大值,然后得到c的取值范圍,然后分情況討論即可得解。

c為最長(zhǎng)邊,2+4=6,4≤c<6,a2+b2=22+42=20

a2+b2>c2,即c2<20,0<c<2,

當(dāng)4≤c<2時(shí),這個(gè)三角形是銳角三角形;

a2+b2=c2,即c2=20,c=2

當(dāng)c=2時(shí),這個(gè)三角形是直角三角形;

a2+b2<c2,即c2>20,c>2,

當(dāng)2<c<6時(shí),這個(gè)三角形是鈍角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下說(shuō)法:其中正確的說(shuō)法有(  )

1)開(kāi)方開(kāi)不盡的數(shù)是無(wú)理數(shù);

2)無(wú)理數(shù)是無(wú)限循環(huán)小數(shù)

3)無(wú)理數(shù)包括正無(wú)理數(shù)和負(fù)無(wú)理數(shù);

4)無(wú)理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示;

5)循環(huán)小數(shù)都是有理數(shù)

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,剪兩張對(duì)邊平行的紙條,隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中的一張,重合的部分構(gòu)成了一個(gè)四邊形,這個(gè)四邊形是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算: + |-2| ++ (-1) 2015

(2)解不等式組并寫(xiě)出該不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD平分∠BACBC于點(diǎn)D,點(diǎn)FBA的延長(zhǎng)線上,點(diǎn)E在線段CD上,EFAC相交于點(diǎn)G,BDA+CEG=180°.

(1)ADEF平行嗎?請(qǐng)說(shuō)明理由;

(2)若點(diǎn)HFE的延長(zhǎng)線上,且∠EDH=C,則∠F與∠H相等嗎,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(2,﹣3),若Bx軸上一動(dòng)點(diǎn),則AB兩點(diǎn)的距離的最小值為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照題中提供的思路點(diǎn)撥,先填空,然后完成解答的全過(guò)程.

如圖,已知ABADBAD60°,BCD120°,延長(zhǎng)BC,使CECD,連接DE,求證:BC+DCAC.

思路點(diǎn)撥:(1)由已知條件ABAD,BAD60°,可知ABD是_三角形.同理由已知條件∠BCD120°得到∠DCE=_,且CECD,可知_;

2)要證BC+DCAC,可將問(wèn)題轉(zhuǎn)化為證兩條線段相等,即_=_;

3)要證(2)中所填寫(xiě)的兩條線段相等,可以先證明_.請(qǐng)寫(xiě)出完整的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為鼓勵(lì)失地農(nóng)民自主創(chuàng)業(yè),在2010年對(duì)60位自主創(chuàng)業(yè)的失地農(nóng)民進(jìn)行了獎(jiǎng)勵(lì),共計(jì)獎(jiǎng)勵(lì)了10萬(wàn)元.獎(jiǎng)勵(lì)標(biāo)準(zhǔn)是:失地農(nóng)民自主創(chuàng)業(yè)連續(xù)經(jīng)營(yíng)一年以上的給予1000元獎(jiǎng)勵(lì):自主創(chuàng)業(yè)且解決5人以上失業(yè)人員穩(wěn)定就業(yè)一年以上的,再給予2000元獎(jiǎng)勵(lì).問(wèn):該縣失地農(nóng)民中自主創(chuàng)業(yè)連續(xù)經(jīng)營(yíng)一年以上的和自主創(chuàng)業(yè)且解決5人以上失業(yè)人員穩(wěn)定就業(yè)一年以上的農(nóng)民分別有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)(﹣t43+(﹣t26;

2)(m42+m32mm22m3

查看答案和解析>>

同步練習(xí)冊(cè)答案