10.下列一組數(shù):-8,2.6,-|-3|,-π,0.101001…(毎兩個(gè)1中逐次增加一個(gè)0)中,無理數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時(shí)理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng).

解答 解:-π,0.101001…(毎兩個(gè)1中逐次增加一個(gè)0)是無理數(shù),
故選:B.

點(diǎn)評(píng) 此題主要考查了無理數(shù)的定義,注意帶根號(hào)的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,$\sqrt{6}$,0.8080080008…(每?jī)蓚(gè)8之間依次多1個(gè)0)等形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列圖形中,是三棱柱的展開圖的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,拋物線y=-$\frac{1}{2}$(x+1)(x-2k)(k>0)交x軸于A、B(A左B右),交y軸于點(diǎn)C,點(diǎn)D在第一象限拋物線的圖象上,且∠ABD=45°,△BCD的面積為$\frac{15}{2}$.
(1)求拋物線解析式;
(2)點(diǎn)P為第一象限拋物線的圖象上一點(diǎn),過點(diǎn)P作PH⊥x軸,垂足為H,PH交BD于E.把△PAH沿PH翻折,點(diǎn)A落在BH邊上F點(diǎn),設(shè)PF交BD于G,若EG=BG,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,設(shè)PF交拋物線于N,連接AN,Q在線段AN上,若∠PQG=2∠APQ.求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,已知∠ADB=∠ADC,則不一定能使△ABD≌△ACD的條件是(  )
A.AB=ACB.BD=CDC.∠B=∠CD.∠BAD=∠CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,邊長(zhǎng)為4cm的等邊△ABC中,點(diǎn)P、Q分別是邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ,CP交于點(diǎn)M,在點(diǎn)P,Q運(yùn)動(dòng)的過程中.
(1)求證:△ABQ≌△CAP;
(2)∠QMC的大小是否發(fā)生變化?若無變化,求∠QMC的度數(shù);若有變化,請(qǐng)說明理由;
(3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.下列關(guān)于函數(shù)y=$\frac{1}{2}$(x-6)2+3的圖象,下列敘述錯(cuò)誤的是( 。
A.圖象是拋物線,開口向上
B.對(duì)稱軸為直線x=6
C.頂點(diǎn)是圖象的最高點(diǎn),坐標(biāo)為(6,3)
D.當(dāng)x<6時(shí),y隨x的增大而減小;當(dāng)x>6時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.從3,-1,$\frac{1}{2}$,1,-3這5個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù)記為a,若數(shù)a使關(guān)于x的不等式組$\left\{\begin{array}{l}{\frac{1}{3}(2x+7)≥3}\\{x-a<0}\end{array}\right.$無解,且使關(guān)于x的分式方程$\frac{x}{x-3}$-$\frac{a-2}{3-x}$=-1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之積是( 。
A.$\frac{1}{2}$B.3C.-3D.-$\frac{3}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.(1)如圖(1),在△ABC和△CDE中,已知AC⊥BC,EC⊥DC,且AC=CD,BC=CE,你能判斷AB與ED的關(guān)系嗎?
(2)若將△ABC沿CD方向平移得到圖(2),請(qǐng)直接判斷△ADE的形狀,不需要說明理由;若此時(shí)EC1=7,AC2=3,你知道線段C1C2的長(zhǎng)度嗎?說明你的解題思路.
(3)應(yīng)用上述方法與結(jié)論,按照?qǐng)D(3)中的數(shù)據(jù),請(qǐng)你直接寫出圖(3)中實(shí)線所圍成的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.定義:如圖1,D,E在△ABC的邊BC上,若△ADE是等邊三角形則稱△ABC可內(nèi)嵌,△ADE叫做△ABC的內(nèi)嵌三角形.
(1)直角三角形不一定可內(nèi)嵌.(填寫“一定”、“一定不”或“不一定”)
(2)如圖2,在△ABC中,∠BAC=120°,△ADE是△ABC的內(nèi)嵌三角形,試說明AB2=BD•BC是否成立?如果成立,請(qǐng)給出證明;如果不一定成立,請(qǐng)舉例說明.
(3)在(2)的條件下,如果AB=1,AC=2,求△ABC的內(nèi)嵌△ADE的邊長(zhǎng) 

查看答案和解析>>

同步練習(xí)冊(cè)答案