已知:如圖,梯形ABCD中,DC∥AB,AD=BC,對(duì)角線AC、BD交于點(diǎn)O,∠COD=60°,若CD=3,

AB=8,求梯形ABCD的高.

 

解:過點(diǎn)C作CE∥DB,交AB的延長(zhǎng)線于點(diǎn)E.

∴∠ACE=∠COD=60°.                     

又∵DC∥AB,  ∴四邊形DCEB為平行四邊形.

∴BD=CE,BE = DC =3,AE=AB+BE=8+3=11.

又∵DC∥AB,AD=BC,

∴DB=AC =CE.

∴△ACE為等邊三角形.

∴AC=AE=11, ∠CAB=60°.                     

    過點(diǎn)C作CH⊥AE于點(diǎn)H.在Rt△ACH中,

 CH=AC·sin∠CAB=11×=

∴梯形ABCD的高為.                            

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、已知:如圖,梯形ABCD中,AD∥BC,AB=CD,對(duì)角線AC與BD相交于點(diǎn)O,則圖中全等三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,梯形ABCD中,AD∥BC,∠DAB=120°,tanC=
3
6
,BC=18,AD=AB.求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知,如圖,梯形ABCD中,AB∥CD,△COD與△AOB的周長(zhǎng)比為1:2,則CD:AB=
1:2
,△COD與△BOC的面積比為
1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,梯形ABCD中,AB∥CD,AD=BC,對(duì)角線AC、BD交于M,AB=2,CD=4,∠CMD=90°,求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:047

已知:如圖,梯形AB-CD中,AB∠DC,E是BC的中點(diǎn),AE、DC的延長(zhǎng)線相交于點(diǎn)F,連結(jié)AC、BF.(1)求證:AB=CF;(2)四邊形ABFC是什么四邊形,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案