【題目】如圖,在正方形ABCD中,AB=2,M為CD的中點(diǎn),N為BC的中點(diǎn),連接AM和DN交于點(diǎn)E,連接BE,作AH⊥BE于點(diǎn)H,延長AH與DN交于點(diǎn)F.連接BF并延長與CD交于點(diǎn)G,則MG的長度為__________.
【答案】
【解析】
要求MG的長度,需要先求出CG的長,過F作PQ‖BC,連接MF,設(shè)出MQ,根據(jù)三角形相似分別表示出AP,PF,QF的長,根據(jù)勾股定理求出MQ的長,再根據(jù)△FGQ△BGC求出CG的長即可求MG的長.
如圖:
過點(diǎn)F作PQ平行于BC,分別交AB,DC于點(diǎn)P,點(diǎn)Q,連接MF;
∴∠APF=∠MQF=90°,
設(shè)MQ=x,則QD=x+1=AP,
∵在正方形ABCD中,AB=2,M為CD的中點(diǎn),N為BC的中點(diǎn),
∴MD=NC=AB=1,
又AD=CD,
∴△AMD△DNC,
∴∠NDC=∠DAM,
∴∠DEM=90°,
又∠MDE=∠FDQ,
∴△DEM△FDQ,
∴ ,
又∵∠DEM=90°,∠MDE=∠NDC,
∴△DEM△DNC,
∴,
∴DE=2ME,
∵DM=1,由勾股定理可得:ME=,DE= ,代入,
∴DQ=2QF,
∴QF=,
∴PF=2-QF= 2-=,
在Rt△AMD中,AD=2,DM=1,
∴AM=,
∴,
∵,
∴=,
整理得:,
解得:x=,x=-1(舍去),
又∠FGQ=∠BGC,∠C=∠C,
∴△FGQ△BGC,
∴即,
∵QC=CD-DQ=1-x,
∴,
解得:GC=,
∴MG=MC-GC=1-=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點(diǎn)E在對角線BD上且tan∠EAC=,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個(gè)圖形中共有_____個(gè)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對稱軸是直線x=0
D. 拋物線在對稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:“最值問題”是數(shù)學(xué)中的一類較具挑戰(zhàn)性的問題.其實(shí),數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學(xué)、物理的學(xué)者,相傳有位將軍曾向他請教一個(gè)問題﹣﹣如圖1,從A點(diǎn)出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B 的值最小.
解答問題:
(1)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;
(2)如圖3,已知菱形ABCD的邊長為6,∠DAB=60°.將此菱形放置于平面直角坐標(biāo)系中,各頂點(diǎn)恰好在坐標(biāo)軸上.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度,沿A→C的方向,向點(diǎn)C運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)C后,立即以相同的速度返回,返回途中,當(dāng)運(yùn)動(dòng)到x軸上某一點(diǎn)M時(shí),立即以每秒1個(gè)單位的速度,沿M→B的方向,向點(diǎn)B運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)B時(shí),整個(gè)運(yùn)動(dòng)停止.
①為使點(diǎn)P能在最短的時(shí)間內(nèi)到達(dá)點(diǎn)B處,則點(diǎn)M的位置應(yīng)如何確定?
②在①的條件下,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),△PAB的面積為S,在整個(gè)運(yùn)動(dòng)過程中,試求S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,等邊△ABC的邊BC在x軸上,A(0,3),B(,0),點(diǎn)M(,0)為x軸上的一個(gè)動(dòng)點(diǎn),連接AM,將AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AN.
(1)當(dāng)M點(diǎn)在B點(diǎn)的左方時(shí),連接CN,求證:△BAM≌△CAN;
(2)如圖2,當(dāng)M點(diǎn)在邊BC上時(shí),過點(diǎn)N作ND//AC交x軸于點(diǎn)D,連接MN,若,試求D點(diǎn)的坐標(biāo);
(3)如圖3,是否存在點(diǎn)M,使得點(diǎn)N恰好在拋物線上,如果存在,請求出m的值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在四邊形ABCD中,AD∥BC,AE=2EB,AD=2,BC=5,EF∥DC,交BC于點(diǎn)F,連接AF.
(1)求CF的長;
(2)若∠BFE=∠FAB,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM的長度為( 。
A. B. 2 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交 線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)求PE的長最大時(shí)m的值.
(3)Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,請直接寫出存在 個(gè)滿足題意的點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com