科目:初中數(shù)學 來源:數(shù)學教研室 題型:022
(1)當x<5時,的值是 ( )
A.x-5 B.5-x C.5+x D.-5-x
(2)當a>0時,化簡等于 ( )
A.0 B.2a C.-2a D.a
(3)若x<-2,化簡|x+2|-等于 ( )
A.2x B.2x-4 C.-4 D.4
查看答案和解析>>
科目:初中數(shù)學 來源:三點一測叢書 九年級數(shù)學 上。ńK版課標本) 江蘇版課標本 題型:044
實踐與探索課上,老師布置了這樣一道題:
有100米長的籬笆材料,想圍成一矩形露天倉庫,要求面積不小于600平方米,在場地的北面有一堵長50米的舊墻.有人用這個籬笆圍一個長40米,寬10米的矩形倉庫,但面積只有400平方米,不合要求.現(xiàn)在請你設計矩形倉庫的長和寬,使它符合要求.
經過同學們一天的實踐與思考,老師收到了如下幾種設計方案:
(1)如果設矩形的寬為x米,則用于長的籬笆為=(50-x)米,這時面積S=x(50-x).
當S=600時,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.
檢驗后知x=20符合要求.
(2)根據(jù)在周長相等的條件下,正方形面積大于矩形面積,所以設計成正方形倉庫,它的邊長為x米,則4x=100,x=25.這時面積達到625米,當然符合要求.
(3)如果利用場地北面的那堵舊墻,取矩形的長與舊墻平行,設與墻垂直的矩形一邊長為x米,則另一邊為100-2x,如圖.
因為舊墻長50米,所以100-2x≤50.即x≥25米.若S=600平方米,則由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根據(jù)x≥25,舍去x2=25-.
所以,利用舊墻,取矩形垂直于舊墻一邊長為25+米(約43米),另一邊長約14米,符合要求.
(4)如果充分利用北面舊墻,即矩形一邊是50米舊墻時,用100米籬笆圍成矩形倉庫,則矩形另一邊長為25米,這時矩形面積為S=50×25=1250(平方米).即面積可達1250平方米,符合設計要求.
還可以有其他一些符合要求的設計方案.請你試試看.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:044
.若方程的解是正數(shù),求a的取值范圍.
關于這道題,有位同學作出如下解答:
解 去分母得,2x+a=-x+2.
化簡,得3x=2-a.
故x=.
欲使方程的根為正數(shù),必須,得a<2.
所以,當a<2時,方程的解是正數(shù).
上述解法是否有誤?若有錯誤請說明錯誤的原因,并寫出正確解答;若沒有錯誤,請說出每一步解法的依據(jù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com