【題目】如圖,在平面直角坐標系中,△CDE的頂點C點坐標為C(1,﹣2),點D的橫坐標為,將△CDE繞點C旋轉到△CBO,點D的對應點B在x軸的另一個交點為點A.
(1)圖中,∠OCE等于∠_____;
(2)求拋物線的解析式;
(3)拋物線上是否存在點P,使S△PAE=S△CDE?若存在,直接寫出點P的坐標;若不存在,請說明理由.
【答案】(1)BCD;(2)y=x2﹣x﹣;(3)存在;(1+,1)或(1﹣,1)或(1+,﹣1)或(1﹣,1).
【解析】
(1)根據(jù)旋轉的性質易得∠OCE=∠BCD;
(2)(2)作CH⊥OE于H,如圖,根據(jù)旋轉的性質得CO=CE,CB=CD,OB=DE,則利用等腰三角形的性質得OH=HE=1,則E點坐標為(2,0),設B(m,0),D(,n),再利用兩點間的距離公式求得m、n的值,然后設頂點式y=a(x-1)2-2,再把B點坐標代入求出a即可得到拋物線解析式;
(3)先利用拋物線的對稱性得到A(-1,0),再根據(jù)旋轉的性質得△CDE≌△CBO,則S△CDE=S△CBO=3,設P(t,t2﹣t﹣),利用三角形面積公式得到關于t的方程,解關于t的一元二次方程求出t,從而可得到滿足條件的P點坐標.
解:(1)∵△CDE繞點C旋轉到△CBO,
∴∠OCE=∠BCD;
故答案為BCD;
(2)作CH⊥OE于H,如圖,
∵△CDE繞點C旋轉到△CBO,
∴CO=CE,CB=CD,OB=DE,
∴OH=HE=1,
∴OE=2,
∴E點坐標為(2,0),
設B(m,0),D(,n),
∵CD2=(1﹣)2+(﹣2﹣n)2 , CB2=(1﹣m)2+22 , DE2=(2﹣)2+n2 ,
∴(1﹣)2+(﹣2﹣n)2=(1﹣m)2+22 , (2﹣)2+n2=m2 ,
∴m=3,n=﹣,
∴B(3,0),
設拋物線解析式為y=a(x﹣1)2﹣2,
把B(3,0)代入得4a﹣2=0,解得a=,
∴拋物線解析式為y=(x﹣1)2﹣2,即y=x2﹣x﹣;
(3)存在.
A與點B關于直線x=1對稱,
∴A(﹣1,0),
∵△CDE繞點C旋轉到△CBO,
∴△CDE≌△CBO,
∴S△CDE=S△CBO=23=3,
設P(t,t2﹣t﹣),
∵S△PAE=S△CDE ,
∴3|t2﹣t﹣|=3,
∴t2﹣t﹣=1或t2﹣t﹣=﹣1,
解方程t2﹣t﹣=1得t1=1+,t2=1﹣,此時P點坐標為(1+,1)或(1﹣,1);
解方程t2﹣t﹣=﹣1得t1=1+,t2=1﹣,此時P點坐標為(1+,﹣1)或(1﹣,1);
綜上所述,滿足條件的P點坐標為(1+,1)或(1﹣,1)或(1+,﹣1)或(1﹣,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結論:①∠DOC=90°,②AD+BC=CD,③,④OD:OC=DE:EC,⑤,正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電商場計劃用9萬元從生產廠家購進50臺電視機,已知該廠家生產3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=x2+bx+c經過點(2,-3)和(4,5)。
(1)求拋物線的表達式及頂點坐標;
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達式;
(3)在(2)的條件下,當-2<x<2時,直線y=m與該圖象有一個公共點,求m的值或取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列游戲對雙方公平的是( )
A. 隨意轉動被等分成個扇形,且分別均勻涂有紅、黃、綠三種顏色的轉盤,若指針指向綠色區(qū)域,則小明勝,否則小亮勝
B. 從一個裝有個紅球,個黃球和個黑球(這些球除顏色外完全相同)的袋中任意摸出一個球,若是紅球,則小明勝,否則小亮勝
C. 投擲一枚均勻的正方體形狀的骰子,若偶數(shù)點朝上,則小明勝,若是奇數(shù)點朝上,則小亮勝
D. 從分別標有數(shù),,,,的五張紙條中,任意抽取一張,若抽到的紙條所標的數(shù)字為偶數(shù),則小明勝,若抽到的紙條所標的數(shù)字為奇數(shù),則小亮勝
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個可以自由轉動的轉盤,被均勻分成等份,分別標上、、、、五個數(shù)字.甲乙兩人玩一個游戲,其規(guī)則如下:任意轉動轉盤一次,轉盤停止后,指針指向一個數(shù)字,如果所得的數(shù)字是偶數(shù),則甲勝;如果所得的數(shù)字是奇數(shù),則乙勝.
(1)轉出的數(shù)字是的概率是________
(2)轉出的數(shù)字不大于的概率是________
(3)轉出的數(shù)字是偶數(shù)的概率是________
(4)你認為這樣的游戲規(guī)則對甲、乙兩人是否公平?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結論有______________.(把所有正確結論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在坐標系xOy中,拋物線y=﹣x2+bx+c經過點A(﹣3,0)和B(1,0),與y軸交于點C,
(1)求拋物線的表達式;
(2)若點D為此拋物線上位于直線AC上方的一個動點,當△DAC的面積最大時,求點D的坐標;
(3)設拋物線頂點關于y軸的對稱點為M,記拋物線在第二象限之間的部分為圖象G.點N是拋物線對稱軸上一動點,如果直線MN與圖象G有公共點,請結合函數(shù)的圖象,直接寫出點N縱坐標t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com