如圖,扇形OAB的圓心角為90°,分別以OA,OB為直徑在扇形內作半圓,P和Q分別表示兩個陰影部分的面積,那么P和Q的大小關系是( 。
分析:假設出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分陰影面積.
解答:解:∵扇形OAB的圓心角為90°,假設扇形半徑為a,
∴扇形面積為:
90×π×a2
360
=
πa2
4

半圓面積為:
1
2
×π×(
a
2
2=
πa2
8
,
∴SQ+SM =SM+SP=
πa2
8
,
∴SQ=SP,
即P=Q,
故選:A.
點評:此題主要考查了扇形面積求法,根據已知得出半圓面積以及扇形面積是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=
2
3
r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•珠海三模)如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側面,求圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側面,求圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省中考數(shù)學押題試卷(6月份)(解析版) 題型:解答題

如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側面,求圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省珠海市中考數(shù)學三模試卷(解析版) 題型:解答題

如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側面,求圓錐底面圓的半徑.

查看答案和解析>>

同步練習冊答案