【題目】已知,AB是O的直徑,點P在弧AB上(不含點A、B),把AOP沿OP對折,點A的對應點C恰好落在O上.

(1)當P、C都在AB上方時(如圖1),判斷PO與BC的位置關系(只回答結果);

(2)當P在AB上方而C在AB下方時(如圖2),(1)中結論還成立嗎?證明你的結論;

(3)當P、C都在AB上方時(如圖3),過C點作CD直線AP于D,且CD是O的切線,證明:AB=4PD.

【答案】解:(1)PO與BC的位置關系是POBC。

(2)(1)中的結論POBC成立。理由為:

由折疊可知:APO≌△CPO,∴∠APO=CPO。

OA=OP,∴∠A=APO。∴∠A=CPO。

∵∠A與PCB都為所對的圓周角,∴∠A=PCB。∴∠CPO=PCB。

POBC。

(3)證明:CD為圓O的切線,OCCD。

ADCD,OCAD。∴∠APO=COP。

由折疊可得:AOP=COP,∴∠APO=AOP。

OA=OP,∴∠A=APO。∴∠A=APO=AOP。∴△APO為等邊三角形。

∴∠AOP=60°。

OPBC,∴∠OBC=AOP=60°。

OC=OB,∴△BC為等邊三角形。∴∠COB=60°。

∴∠POC=180°﹣(AOP+COB)=60°。

OP=OC,∴△POC也為等邊三角形。∴∠PCO=60°,PC=OP=OC。

∵∠OCD=90°,∴∠PCD=30°。

在RtPCD中,PD=PC,

PC=OP=AB,PD=AB,即AB=4PD。

解析折疊的性質,圓心角、弧、弦的關系,圓周角定理,平行的判定和性質,切線的性質,全等三角形的性質,等腰三角形的性質,等邊三角形的判定和性質,含30度角的直角三角形的性質。

(1)由折疊可得,由AOP=POC ;因為AOC和ABC是弧所對的圓心角和圓周角,根據同弧所對圓周角是圓心角一半的性質,得AOP=ABC;根據同位角相等兩直線平行的判定,得PO與BC的位置關系是平行。

(2)(1)中的結論成立,理由為:由折疊可知三角形APO與三角形CPO全等,根據全等三角形的對應角相等可得出APO=CPO,再由OA=OP,利用等邊對等角得到A=APO,等量代換可得出A=CPO,又根據同弧所對的圓周角相等得到A=PCB,再等量代換可得出COP=ACB,利用內錯角相等兩直線平行,可得出PO與BC平行。

(3)由CD為圓O的切線,利用切線的性質得到OCCD,又ADCD,利用平面內垂直于同一條直線的兩直線平行得到OCAD,根據兩直線平行內錯角相等得到APO=COP,再利用折疊的性質得到AOP=COP,等量代換可得出APO=AOP,再由OA=OP,利用等邊對等角可得出一對角相等,等量代換可得出AOP三內角相等,確定出AOP為等邊三角形,根據等邊三角形的內角為60°得到

AOP=60°,由OPBC,利用兩直線平行同位角相等可得出OBC=AOP=60°,再由OB=OC,得到OBC為等邊三角形,可得出COB為60°,利用平角的定義得到POC也為60°,再加上OP=OC,可得出POC為等邊三角形,得到內角OCP=60°,可求出PCD=30°,在RtPCD中,利用30°所對的直角邊等于斜邊的一半可得出PD為PC的一半,而PC=圓的半徑OP=直徑AB的一半,可得出PD為AB的四分之一,即AB=4PD,得證。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點M上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結OMCM.

(1)若半圓的半徑為10.

①當∠AOM=60°時,求DM的長;

②當AM=12時,求DM的長.

(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標為(1,0),其部分圖象如圖所示,下列結論:

4ac<b2; 方程ax2+bx+c=0的兩個根是; 3a+c>0; y>0時,x的取值范圍是-1≤x<3; x<0時,yx增大而增大;

其中結論正確有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形 ABCD 的一條邊 AD=8,將矩形 ABCD 折疊,使得頂點 B 落在 CD 邊上的 P 點處.

1)求證:△OCP∽△PDA

2)若△OCP 與△PDA 的面積比為 14,求邊 AB 的長;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,AC平分DAB交O于點C,過點C的直線垂直于AD交AB的延長線于點P,弦CE交AB于點F,連接BE.

(1)求證:PD是O的切線;

(2)若PC=PF,試證明CE平分∠ACB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2-4x+c的圖象過點(-1, 0)和點(2,-9).

(1) 求該二次函數(shù)的解析式并寫出其對稱軸;

(2) 已知點P(2 , -2),連結OP , x軸上找一點M,使△OPM是等腰三角形,請直接寫出點M的坐標(不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù) a、b、c滿足 a+b2=1,a+1=c2﹣2c,若 m=2a2+5b2,實數(shù) m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖P是矩形ABCD內一點,連接PA、PB、PC、PD,已知AB=3,BC=4,PAB、PBC、PCD、PDA的面積分別為S1、S2、S3、S4以下判斷PA+PB+PC+PD的最小值為10;PAB≌△PDC,PAD≌△PBC;S1=S2,S3=S4;PAB∽△PDA,PA=2.4;其中正確的是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃在“陽光體育”活動課程中開設乒乓球、羽毛球、籃球、足球四個體育活動項目供學生選擇.為了估計全校學生對這四個活動項目的選擇情況,體育老師從全體學生中隨機抽取了部分學生進行調查(規(guī)定每人必須并且只能選擇其中的一個項目),并把調查結果繪制成如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請你根據圖中信息解答下列問題:

(1)求參加次調查的學生人數(shù),并補全條形統(tǒng)計圖;

(2)求扇形統(tǒng)計圖中“籃球”項目所對應扇形的圓心角度數(shù);

(3)若該校共有600名學生,試估計該校選擇“足球”項目的學生有多少人?

查看答案和解析>>

同步練習冊答案