【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,則下列說法正確的個數(shù)有( )
①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.
A. 0個; B. 1個; C. 2個; D. 3個.
【答案】C
【解析】
根據(jù)折疊的性質(zhì)可得出∠DBC=22.5°,△DEC和△DEF均是等腰直角三角形,結(jié)合選項所述即可判斷出正確與否.
解:①由折疊的性質(zhì)得,∠BDF=22.5°,∠FDE=∠CDE=45°,
∴DF不平分∠BDE
故①錯誤,
②∵∠ABC=2∠DBC,
∴∠DBC=22.5°,∠DFC=∠DCB=45°=∠DBF+∠BDF,
∴∠DBF=∠BDF=22.5°,
∴BF=DF,
故②正確,
③由折疊的性質(zhì)可得出△DEC和△DEF均是等腰直角三角形,
又∵BF=DF,
∴△CED的周長=CE+DE+CD=CE+FE+BF=BC,
故③正確,
綜上,②③正確,共2個.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在第一象限,△ABP是邊長為2的等邊三角形,當點A在x軸的正半軸上運動時,點B隨之在y軸的正半軸上運動,運動過程中,點P到原點的最大距離是______;若將△ABP的PA邊長改為,另兩邊長度不變,則點P到原點的最大距離變?yōu)?/span>______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖一,∠ACB=90°,點D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點G作GH⊥AD,垂足為H,與DE的延長線交于點M,如圖二,找出圖中與AB相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于數(shù)對(a,b)、(c,d),定義:當且僅當a=c且b=d時,(a,b)=(c,d);并定義其運算如下: (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),則xy的值是( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com